Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0171923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193672

RESUMO

Application of organic fertilizers is an important strategy for sustainable agriculture. The biological source of organic fertilizers determines their specific functional characteristics, but few studies have systematically examined these functions or assessed their health risk to soil ecology. To fill this gap, we analyzed 16S rRNA gene amplicon sequencing data from 637 soil samples amended with plant- and animal-derived organic fertilizers (hereafter plant fertilizers and animal fertilizers). Results showed that animal fertilizers increased the diversity of soil microbiome, while plant fertilizers maintained the stability of soil microbial community. Microcosm experiments verified that plant fertilizers were beneficial to plant root development and increased carbon cycle pathways, while animal fertilizers enriched nitrogen cycle pathways. Compared with animal fertilizers, plant fertilizers harbored a lower abundance of risk factors such as antibiotic resistance genes and viruses. Consequently, plant fertilizers might be more suitable for long-term application in agriculture. This work provides a guide for organic fertilizer selection from the perspective of soil microecology and promotes sustainable development of organic agriculture.IMPORTANCEThis study provides valuable guidance for use of organic fertilizers in agricultural production from the perspective of the microbiome and ecological risk.


Assuntos
Microbiota , Rizosfera , Animais , Fertilizantes , RNA Ribossômico 16S/genética , Microbiota/genética , Solo , Plantas/genética , Microbiologia do Solo , Raízes de Plantas
2.
Environ Sci Technol ; 58(10): 4476-4486, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382547

RESUMO

Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.


Assuntos
Antibacterianos , Formigas , Genes Bacterianos , Humanos , Adulto , Idoso , Antibacterianos/farmacologia , Ecossistema , Lipídeos
3.
Environ Res ; 252(Pt 4): 119116, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734289

RESUMO

Activated sludge comprises diverse bacteria, fungi, and other microorganisms, featuring a rich repertoire of genes involved in antibiotic resistance, pollutant degradation, and elemental cycling. In this regard, hybrid assembly technology can revolutionize metagenomics by detecting greater gene diversity in environmental samples. Nonetheless, the optimal utilization and comparability of genomic information between hybrid assembly and short- or long-read technology remain unclear. To address this gap, we compared the performance of the hybrid assembly, short- and long-read technologies, abundance and diversity of annotated genes, and taxonomic diversity by analysing 46, 161, and 45 activated sludge metagenomic datasets, respectively. The results revealed that hybrid assembly technology exhibited the best performance, generating the most contiguous and longest contigs but with a lower proportion of high-quality metagenome-assembled genomes than short-read technology. Compared with short- or long-read technologies, hybrid assembly technology can detect a greater diversity of microbiota and antibiotic resistance genes, as well as a wider range of potential hosts. However, this approach may yield lower gene abundance and pathogen detection. Our study revealed the specific advantages and disadvantages of hybrid assembly and short- and long-read applications in wastewater treatment plants, and our approach could serve as a blueprint to be extended to terrestrial environments.


Assuntos
Metagenômica , Esgotos , Esgotos/microbiologia , Metagenômica/métodos , Metagenoma , Anotação de Sequência Molecular , Bactérias/genética , Bactérias/classificação
4.
Angew Chem Int Ed Engl ; 63(7): e202318011, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131886

RESUMO

Antimicrobial peptides (AMPs) exhibit mighty antibacterial properties without inducing drug resistance. Achieving much higher selectivity of AMPs towards bacteria and normal cells has always been a continuous goal to be pursued. Herein, a series of sulfonium-based polypeptides with different degrees of branching and polymerization were synthesized by mimicking the structure of vitamin U. The polypeptide, G2 -PM-1H+ , shows both potent antibacterial activity and the highest selectivity index of 16000 among the reported AMPs or peptoids (e.g., the known index of 9600 for recorded peptoid in "Angew. Chem. Int. Ed., 2020, 59, 6412."), which can be attributed to the high positive charge density of sulfonium and the regulation of hydrophobic chains in the structure. The antibacterial mechanisms of G2 -PM-1H+ are primarily ascribed to the interaction with the membrane, production of reactive oxygen species (ROS), and disfunction of ribosomes. Meanwhile, altering the degree of alkylation leads to selective antibacteria against either gram-positive or gram-negative bacteria in a mixed-bacteria model. Additionally, both in vitro and in vivo experiments demonstrated that G2 -PM-1H+ exhibited superior efficacy against methicillin-resistant Staphylococcus aureus (MRSA) compared to vancomycin. Together, these results show that G2 -PM-1H+ possesses high biocompatibility and is a potential pharmaceutical candidate in combating bacteria significantly threatening human health.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Peptoides , Vitamina U , Humanos , Vitamina U/farmacologia , Peptídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Vancomicina/farmacologia , Peptoides/química , Bactérias , Peptídeos Antimicrobianos , Testes de Sensibilidade Microbiana
5.
Small ; 19(43): e2304379, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37365958

RESUMO

The formation of biofilm and thrombus on medical catheters poses a significant life-threatening concern. Hydrophilic anti-biofouling coatings upon catheter surfaces with complex shapes and narrow lumens are demonstrated to have the potential in reducing complications. However, their effectiveness is constrained by poor mechanical stability and weak substrate adhesion. Herein, a novel zwitterionic polyurethane (SUPU) with strong mechanical stability and long-term anti-biofouling is developed by controlling the ratio of sulfobetaine-diol and ureido-pyrimidinone. Once immersed in water, as-synthesized zwitterionic coating (SUPU3 SE) would undergo a water-driven segment reorientation to obtain much higher durability than its direct drying one, even under various extreme treatments, including acidic solution, abrasion, ultrasonication, flushing, and shearing, in PBS at 37 °C for 14 days. Moreover, SUPU3 SE coating could achieve a 97.1% of exceptional reducing protein fouling, complete prevention of cell adhesion, and long-lasting anti-biofilm performance even after 30 days. Finally, the good anti-thrombogenic formations of SUPU3 SE coating with bacterial treatment are validated in blood circulation through an ex vivo rabbit arteriovenous shunt model. This work provides a facile approach to fabricating stable hydrophilic coating through a simple solvent exchange to reduce thrombosis and infection of biomedical catheters.


Assuntos
Aderência Bacteriana , Poliuretanos , Animais , Coelhos , Água , Solventes , Catéteres
6.
Environ Sci Technol ; 57(20): 7698-7708, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37161271

RESUMO

Antimicrobial peptides are a promising new class of antimicrobials that could address the antibiotic resistance crisis, which poses a major threat to human health. These peptides are present in all kingdoms of life, but especially in microorganisms, having multiple origins in diverse taxa. To date, there has been no global study on the diversity of antimicrobial peptides, the hosts in which these occur, and the potential for resistance to these agents. Here, we investigated the diversity and number of antimicrobial peptides in four main habitats (aquatic, terrestrial, human, and engineered) by analyzing 52,515 metagenome-assembled genomes. The number of antimicrobial peptides was higher in the human gut microbiome than in other habitats, and most hosts of antimicrobial peptides were habitat-specific. The relative abundance of genes that confer resistance to antimicrobial peptides varied between habitats and was generally low, except for the built environment and on human skin. The horizontal transfer of potential resistance genes among these habitats was probably constrained by ecological barriers. We systematically quantified the risk of each resistance determinant to human health and found that nearly half of them pose a threat, especially those that confer resistance to multiple AMPs and polymyxin B. Our results help identify the biosynthetic potential of antimicrobial peptides in the global microbiome, further identifying peptides with a low risk of developing resistance.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Microbiota , Humanos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Antibacterianos/farmacologia
7.
Ecotoxicol Environ Saf ; 262: 115230, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37413963

RESUMO

Chlorpyrifos is a widely used organophosphorus insecticide because of its high efficiency and overall effectiveness, and it is commonly detected in aquatic ecosystems. However, at present, the impact of chlorpyrifos on the aquatic micro-ecological environment is still poorly understood. Here, we established aquatic microcosm systems treated with 0.2 and 2.0 µg/L chlorpyrifos, and employed omics biotechnology, including metagenomics and 16S rRNA gene sequencing, to investigate the effect of chlorpyrifos on the composition and functional potential of the aquatic and zebrafish intestinal microbiomes after 7 d and 14 d chlorpyrifos treatment. After 14 d chlorpyrifos treatment, the aquatic microbial community was adversely affected in terms of its composition, structure, and stability, while its diversity showed only a slight impact. Most functions, especially capacities for environmental information processing and metabolism, were destroyed by chlorpyrifos treatment for 14 d. We observed that chlorpyrifos increased the number of risky antibiotic resistance genes and aggravated the growth of human pathogens. Although no clear effects on the structure of the zebrafish intestinal microbial community were observed, chlorpyrifos treatment did alter the metabolic capacity of the zebrafish. Our study highlights the ecological risk of chlorpyrifos to the aquatic environment and provides a theoretical basis for the rational use of pesticides in agricultural production.

8.
J Environ Sci (China) ; 125: 258-265, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375911

RESUMO

Glyphosate, the most extensively used herbicide globally, has raised ecotoxicological concerns because it can be transported into the aquatic environment and cause adverse effects on the aquatic system. However, the functional mechanism of glyphosate on cyanobacteria are not completely disentangled. In this study, we selected six common cyanobacteria to evaluate glyphosate effects on cyanobacterial growth in monoculture experiment. Results showed that the growth of five tested cyanobacterial species were promoted under different degrees, and only Pseudanabaena was inhibited by glyphosate. In the phylogenetic tree based on gene sequences of 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS), a target for glyphosate, we found that the position of Pseudanabaena is the closest to plant, which was sensitive to glyphosate, thereby explaining the inhibitory effect of Pseudanabaena following glyphosate exposure. The primary degraded metabolites or analogs did not induce cyanobacterial growth, laterally demonstrating that glyphosate was used as a source of phosphorus to accelerate cyanobacterial growth because phosphorus levels increased in the medium of glyphosate treatment. Overall, this study provides a better understanding of the influence of glyphosate on the composition of aquatic microbiota and explains the mechanism of cyanobacterial response to glyphosate.


Assuntos
Cianobactérias , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Filogenia , Herbicidas/toxicidade , Herbicidas/metabolismo , Fósforo/metabolismo , Glifosato
9.
Environ Microbiol ; 24(8): 3405-3419, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049096

RESUMO

It has been widely reported that probiotic consortia in the rhizosphere can enhance the plant resistance to pathogens. However, the general composition and functional profiles of bacterial community in soils which suppress multiple diseases for various plants remain largely unknown. Here, we combined metadata analysis with machine learning to identify the general patterns of bacterial-community composition in disease-suppressive soils. Disease-suppressive soils significantly enriched Firmicutes and Actinobacteria but showed a decrease in Proteobacteria and Bacteroidetes. Our machine-learning models accurately identified the disease-conducive and -suppressive soils with 54 biomarker genera, 28 of which were potentially beneficial. We further carried out a successive passaging experiment with the susceptible rps2 mutant of Arabidopsis thaliana invaded by Pseudomonas syringae pv. tomato DC3000 (avrRpt2) for functional verification of potential beneficial bacteria. The disease-suppressive ability of Kribbella, Nocardioides and Bacillus was confirmed, and they positively activated the pathogen-associated molecular patterns-triggered immunity pathway. Results also showed that chemical control by pesticides in agricultural production decreased the disease-suppressive ability of soil. This study provides a method for accurately predicting the occurrence of multiple diseases in soil and identified potential beneficial bacteria to guide a wide range of multiple-strain biological control strategies in agricultural management.


Assuntos
Arabidopsis , Solo , Arabidopsis/microbiologia , Bactérias/genética , Aprendizado de Máquina , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas , Pseudomonas syringae/genética , Microbiologia do Solo
10.
Environ Microbiol ; 24(11): 5561-5573, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054535

RESUMO

High-throughput sequencing (HTS) of soil environmental DNA provides an advanced insight into the effects of pesticides on soil microbial systems. However, the association between the properties of the pesticide and its ecological impact remains methodically challenging. Risks associated with pesticide use can be minimized if pesticides with optimal structural traits were applied. For this purpose, we merged the 20 independent HTS studies, to reveal that pesticides significantly reduced beneficial bacteria associated with soil and plant immunity, enhanced the human pathogen and weaken the soil's ecological stability. Through the machine-learning approach, correlating these impacts with the physicochemical properties of the pesticides yielded a random forest model with good predictive capabilities. The models revealed that physical pesticide properties such as the dissociation constant (pKa), the molecular weight and water solubility, determined the ecological impact of pesticides to a large extent. Moreover, this study identified that eco-friendly pesticides should possess a value of pKa > 5 and a molecular weight in the range of 200-300 g/mol, which were found to be conducive to bacteria related to plant immunity promotion and exerted the lowest fluctuation of human opportunistic pathogen and keystone species. This guides the design of pesticides for which the impacts on soil biota are minimized.


Assuntos
Microbiota , Praguicidas , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/farmacologia , Microbiota/genética , Bactérias/genética , Aprendizado de Máquina , Sequenciamento de Nucleotídeos em Larga Escala
11.
Ecotoxicol Environ Saf ; 242: 113920, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905628

RESUMO

The goal of the current study was to quantify the trophic transfer of copper nanoparticles (CuNPs) in a food chain consisting of the microalga Pseudokirchneriella subcapitata as the representative of primary producer, the grazer Daphnia magna, and the omnivorous mysid Limnomysis benedeni. To quantify the size and number concentration of CuNPs in the biota, tissue extraction with tetramethylammonium hydroxide (TMAH) was performed and quantification was done by single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The bioconcentration factor (BCF) of the test species for CuNPs varied between 102 - 103 L/kg dry weight when expressing the internal concentration on a mass basis, which was lower than BCF values reported for Cu2+ (103 - 104 L/kg dry weight). The particle size of CuNPs determined by sp-ICP-MS ranged from 22 to 40 nm in the species. No significant changes in the particle size were measured throughout the food chain. Moreover, the measured number of CuNPs in each trophic level was in the order of 1013 particles/kg wet weight. The calculated trophic transfer factor (mass concentration basis) was > 1. This indicates biomagnification of particulate Cu from P. subcapitata to L. benedeni. It was also found that the uptake of particulate Cu (based on the particle number concentration) was mainly from the dietary route rather than from direct aqueous exposure. Furthermore, dietary exposure to CuNPs had a significant effect on the feeding rate of mysid during their transfer from daphnia to mysid and from alga through daphnia to mysid. This work emphasizes the importance of tracing the particulate fraction of metal-based engineered nanoparticles when studying their uptake and trophic transfer.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Animais , Bioacumulação , Cobre , Daphnia , Cadeia Alimentar , Nanopartículas Metálicas/química , Poluentes Químicos da Água/toxicidade
12.
Environ Microbiol ; 23(11): 6895-6906, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34658124

RESUMO

Plant physiological and metabolic processes are modulated by rhythmic gene expression in a large part. Meanwhile, plants are also regulated by rhizosphere microorganisms, which are fed by root exudates and provide beneficial functions to their plant host. Whether the biorhythms in plants would transfer to the rhizosphere microbial community is still uncertain and their intricate connection remains poorly understood. Here, we investigated the role of the Arabidopsis circadian clock in shaping the rhizosphere microbial community using wild-type plants and clock mutants (cca1-1 and toc1-101) with transcriptomic, metabolomic and 16S rRNA gene sequencing analysis throughout a 24-h period. Deficiencies of the central circadian clock led to abnormal diurnal rhythms for thousands of expressed genes and dozens of root exudates. The bacterial community failed to follow obvious patterns in the 24-h period, and there was lack of coordination with plant growth in the clock mutants. Our results suggest that the robust rhythmicity of genes and root exudation due to circadian clock in plants is an important driving force for the positive succession of rhizosphere communities, which will feedback on plant development.


Assuntos
Proteínas de Arabidopsis , Rizosfera , Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , RNA Ribossômico 16S , Fatores de Transcrição/genética
13.
Bull Environ Contam Toxicol ; 107(4): 610-615, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32737512

RESUMO

In recent years, microplastics and nanoplastics have gained public attention, but their impacts on the freshwater microbial communities is rarely evaluated. In this study, the effects of 1 mg/L nano-sized polystyrene (nPS) and its modified forms (carboxyl-modified and amino-modified nPS) on the structures and functions of freshwater microbial community were determined. The nPS were found to slightly reduce the chlorophyll-a and increase the phycocyanin contents of freshwater microbial communities. Moreover, the richness of the microbial communities temporarily decreased during this process, while their diversity remained uninfluenced by treatment with nPS. Although the three tested nPS types were found to disturb the compositions of both the prokaryotic and eukaryotic communities to some degree, they did not affect the functions of freshwater bacterial communities significantly due to functional redundancy. Our study demonstrated that the ecotoxicities of the nPS itself were found to be lower than what is generally expected.


Assuntos
Microbiota , Poluentes Químicos da Água , Água Doce , Plásticos , Poliestirenos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
J Environ Sci (China) ; 99: 175-186, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183695

RESUMO

Microalgae and cyanobacteria are fundamental components of aquatic ecosystems. Pollution in aquatic environment is a worldwide problem. Toxicological research on microalgae and cyanobacteria can help to establish a solid foundation for aquatic ecotoxicological assessments. Algae and cyanobacteria occupy a large proportion of the biomass in aquatic environments; thus, their toxicological responses have been investigated extensively. However, the depth of toxic mechanisms and breadth of toxicological investigations need to be improved. While existing pollutants are being discharged into the environment daily, new ones are also being produced continuously. As a result, the phenomenon of water pollution has become unprecedentedly complex. In this review, we summarize the latest findings on five kinds of aquatic pollutants, namely, metals, nanomaterials, pesticides, pharmaceutical and personal care products (PPCPs), and persistent organic pollutants (POPs). Further, we present information on emerging pollutants such as graphene, microplastics, and ionic liquids. Efforts in studying the toxicological effects of pollutants on microalgae and cyanobacteria must be increased in order to better predict the potential risks posed by these materials to aquatic ecosystems as well as human health.


Assuntos
Cianobactérias , Poluentes Ambientais , Microalgas , Poluentes Químicos da Água , Ecossistema , Humanos , Plásticos , Poluentes Químicos da Água/toxicidade
15.
J Environ Sci (China) ; 99: 1-9, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183685

RESUMO

Freshwater cyanobacterial blooms have drawn public attention because they threaten the safety of water resources and human health worldwide. Heavy cyanobacterial blooms outbreak in Lake Taihu in summer annually and vanish in other months. To find out the factors impacting the cyanobacterial blooms, the present study measured the physicochemical parameters of water and investigated the composition of microbial community using the 16S rRNA gene and internal transcribed spacer amplicon sequencing in the months with or without bloom. The most interesting finding is that two major cyanobacteria, Planktothrix and Microcystis, dramatically alternated during a cyanobacterial bloom in 2016, which is less mentioned in previous studies. When the temperature of the water began increasing in July, Planktothrix appeared first and showed as a superior competitor for M. aeruginosa in NO3--rich conditions. Microcystis became the dominant genus when the water temperature increased further in August. Laboratory experiments confirmed the influence of temperature and the total dissolved nitrogen (TDN) form on the growth of Planktothrix and Microcystis in a co-culture system. Besides, species interactions between cyanobacteria and non-cyanobacterial microorganisms, especially the prokaryotes, also played a key role in the alteration of Planktothrix and Microcystis. The present study exhibited the alteration of two dominant cyanobacteria in the different bloom periods caused by the temperature, TDN forms as well as the species interactions. These results helped the better understanding of cyanobacterial blooms and the factors which contribute to them.


Assuntos
Cianobactérias , Microbiota , Microcystis , Cianobactérias/genética , Lagos , Microcystis/genética , RNA Ribossômico 16S/genética
16.
J Environ Sci (China) ; 97: 102-109, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32933724

RESUMO

An effective broad-spectrum fungicide, azoxystrobin (AZ), has been widely detected in aquatic ecosystems, potentially affecting the growth of aquatic microorganisms. In the present study, the eukaryotic alga Monoraphidium sp. and the cyanobacterium Pseudanabaena sp. were exposed to AZ for 7 days. Our results showed that 0.2-0.5 mg/L concentrations of AZ slightly inhibited the growth of Monoraphidium sp. but stimulated Pseudanabaena sp. growth. Meanwhile, AZ treatment effectively increased the secretion of total organic carbon (TOC) in the culture media of the two species, and this phenomenon was also found in a freshwater microcosm experiment (containing the natural microbial community). We attempted to assess the effect of AZ on the function of aquatic microbial communities through metabolomic analysis and further explore the potential risks of this compound. The metabonomic profiles of the microcosm indicated that the most varied metabolites after AZ treatment were related to the citrate cycle (TCA), fatty acid biosynthesis and purine metabolism. We thereby inferred that the microbial community increased extracellular secretions by adjusting metabolic pathways, which might be a stress response to reduce AZ toxicity. Our results provide an important theoretical basis for further study of fungicide stress responses in aquatic microcosm microbial communities, as well as a good start for further explorations of AZ detoxification mechanisms, which will be valuable for the evaluation of AZ environmental risk.


Assuntos
Fungicidas Industriais , Microbiota , Água Doce , Pirimidinas , Estrobilurinas
17.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420344

RESUMO

The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems.IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated.


Assuntos
Água Doce/microbiologia , Lagos/microbiologia , Interações Microbianas/fisiologia , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Toxinas Bacterianas/metabolismo , Biomassa , China , Técnicas de Cocultura , Meios de Cultura/química , DNA Bacteriano/análise , Genes de RNAr/genética , Microbiota , Microcistinas , Microcystis/genética , Nitrogênio/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento
18.
Ecotoxicol Environ Saf ; 168: 72-79, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30384169

RESUMO

Azoxystrobin (AZ) is an effective broad-spectrum fungicide. Due to its extensive application, AZ is detectable in aquatic ecosystems and thus influences aquatic organisms. In this study, the acute toxicity (96 h) of AZ at concentrations of 1.0 mg/L and 5.0 mg/L on the diatom Phaeodactylum tricornutum were examined. At the tested concentrations, AZ significantly inhibited P. tricornutum growth and destroyed its cellular structure. Furthermore, the mechanisms of AZ-induced toxicity on P. tricornutum changed as the exposure time extended. Forty-eight hours after exposure, AZ inhibited P. tricornutum growth primarily via inducing oxidative stress, which increased the activity of two main antioxidant enzymes, superoxide dismutase and peroxidase, and inhibited energy metabolism. However, after 96 h of treatment, the decline in the photosynthetic capacity of P. tricornutum demonstrated that the photosystem was the main AZ target. The pigment content and expression levels of genes related to photosynthetic electron transfer reactions were also significantly decreased. The present study describes AZ toxicity in P. tricornutum and is very valuable for assessing the environmental risk of AZ.


Assuntos
Diatomáceas/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Pirimidinas/toxicidade , Estrobilurinas/toxicidade , Antioxidantes/farmacologia , Diatomáceas/crescimento & desenvolvimento , Peroxidase/metabolismo , Peroxidases/metabolismo , Fotossíntese/efeitos dos fármacos , Superóxido Dismutase/metabolismo
19.
Bull Environ Contam Toxicol ; 103(5): 683-688, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471659

RESUMO

Extensive use of the fungicides azoxystrobin (AZ) and pyraclostrobin (PYR) can have negative effects on aquatic environments, but comprehensive studies on their effect on aquatic microbial communities are still lacking. We found that AZ and PYR could both inhibit the growth of Chlorella vulgaris, but PYR also inhibited Microcystis aeruginosa more strongly than did AZ. High-throughput sequencing analysis showed that AZ promoted the growth of Cyanobacteria in microcosms, and both PYR and AZ disturbed the ecological balance in the aquatic bacterial community and created distinct ecological risks. Our study suggests that the ecological risk of fungicides is complex, and fungicide use should be better managed to reduce potential risks to the environment.


Assuntos
Água Doce/microbiologia , Fungicidas Industriais/toxicidade , Pirimidinas/toxicidade , Estrobilurinas/toxicidade , China , Chlorella vulgaris/efeitos dos fármacos , Cianobactérias/efeitos dos fármacos , Ecotoxicologia , Microcystis/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento
20.
Bull Environ Contam Toxicol ; 102(3): 439-445, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30734056

RESUMO

The unfounded use of chiral pesticides has caused widespread concern. In this study, the enantioselective effects of S- and racemic (Rac)-metolachlor on the oxidative stress of wheat seedlings was determined based on physiological and gene transcription differences. Growth inhibition increased with increasing concentrations of tested metolachlor, and S-metolachlor had a stronger inhibitory effect than did Rac-metolachlor. Root growth was also significantly inhibited, but no enantioselective effects from the tested concentrations of the metolachlor enantiomers were observed. At a concentration of 5 mg L-1, the maximal fresh weight inhibition reached 63.7% and 53.8% for S-metolachlor and Rac-metolachlor, respectively. In response to the S-metolachlor treatment, the maximum level of superoxide anions and malondialdehyde (MDA) increased to 1.73 and 2.55 times that in response to the control treatment, both of which were greater than those in response to the Rac-metolachlor treatment. The activity of superoxide dismutase (SOD) also increased in response to the S-metolachlor treatment, but the activity of peroxidase (POD) decreased. Real-time polymerase chain reaction (PCR) revealed that, compared with the Rac-metolachlor treatment, the S-metolachlor treatment attenuated the expression of several antioxidant genes. Together, these results demonstrate that S-metolachlor has a greater effect than does Rac-metolachlor on wheat seedlings.


Assuntos
Acetamidas/toxicidade , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Acetamidas/química , Antioxidantes/metabolismo , Herbicidas/química , Plântula/metabolismo , Poluentes do Solo/química , Estereoisomerismo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa