Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Exp Aging Res ; : 1-12, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357913

RESUMO

The aim was to examine the diagnostic efficacy of hippocampal subregions volume and texture in differentiating amnestic mild cognitive impairment (MCI) from normal aging changes. Ninety MCI subjects and eighty-eight well-matched healthy controls (HCs) were selected. Twelve hippocampal subregions volume and texture features were extracted using Freesurfer and MaZda based on T1 weighted MRI. Then, two-sample t-test and Least Absolute Shrinkage and Selection Operator (LASSO) regression were developed to select a subset of the original features. Support vector machine (SVM) was used to perform the classification task and the area under the curve (AUC), sensitivity, specificity and accuracy were calculated to evaluate the diagnostic efficacy of the model. The volume features with high discriminative power were mainly located in the bilateral CA1 and CA4, while texture feature were gray-level non-uniformity, run length non-uniformity and fraction. Our model based on hippocampal subregions volume and texture features achieved better classification performance with an AUC of 0.90. The volume and texture of hippocampal subregions can be utilized for the diagnosis of MCI. Moreover, we found that the features that contributed most to the model were mainly textural features, followed by volume. These results may guide future studies using structural scans to classify patients with MCI.

2.
Physiol Plant ; 175(6): e14055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148188

RESUMO

Patchouli alcohol, a significant bioactive component of the herbal plant Pogostemon cablin, has considerable medicinal and commercial potential. Several genes and transcription factors involved in the biosynthesis pathway of patchouli alcohol have been identified. However, so far, regulatory factors directly interacting with patchouli synthase (PTS) have not been reported. This study was conducted to analyze the interaction between PcENO3 and PcPTS to explore the molecular regulation effect of PcENO3 on patchouli alcohol biosynthesis. PcENO3, a homologous protein of Arabidopsis ENO3 belonging to the enolase family, was identified and characterized. Subcellular localization experiments in Arabidopsis protoplast cells indicated that the PcENO3 protein was localized in both the cytoplasm and nucleus. The physical interaction between PcENO3 and PcPTS was confirmed through yeast two-hybrid (Y2H), GST pull-down, and bimolecular fluorescence complementation assays. Furthermore, the Y2H assay demonstrated that PcENO3 could also interact with JAZ proteins in the JA pathway. Enzymatic assays showed that the interaction with PcENO3 increased the catalytic activity of patchoulol synthase. Additionally, suppression of PcENO3 expression with VIGS (virus-induced gene silencing) decreased patchouli alcohol content compared to the control. These findings suggest that PcENO3 interacts with patchoulol synthase and modulates patchoulol biosynthesis by enhancing the enzymatic activity of PcPTS.


Assuntos
Arabidopsis , Pogostemon , Sesquiterpenos , Pogostemon/genética , Pogostemon/metabolismo , Arabidopsis/metabolismo , Sesquiterpenos/metabolismo
3.
J Environ Manage ; 344: 118757, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573695

RESUMO

Wetlands in the Yarlung Tsangpo River Basin (YTR) on the Qinghai-Tibet Plateau provide immense soil organic carbon (SOC) storage, which is highly susceptible to climate warming and requires urgent deciphering SOC stabilization mechanisms of long-term protection of SOC against decomposition. Conflicting views exist regarding whether persistent SOC is controlled by molecular features or by mineral protection. As such, this study quantified SOC stability using two thermal indices (TG-T50, and DSC), described molecular features of SOC using pyrolysis-gas chromatography-mass spectrometry, and measured SOC protection by minerals using a chemical extraction method. Results indicated SOC of topsoils had higher thermal stability, with TG-T50 and DSC-T50 of 337.61 °C and 384.58 °C, than that of subsoils with TG-T50 and DSC-T50 of 337.32 and 382.67 °C, respectively. We found subsoils had significantly higher proportions of aliphatic and aromatic compounds, while existed higher SOC associated with minerals. It seemed SOC stabilization differed with soil depths, in which mineral protection dictated SOC thermal stability in topsoils while molecular features posed a more important constraint on SOC stabilization in subsoils. Overall, our findings support the hypothesis of physical and chemical protection but emphasized that SOC thermal stability largely depended on to extent of the combination between molecular features and mineral protection, which explained 55% in topsoils and 73% in subsoils, respectively.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Tibet , Áreas Alagadas , Minerais/análise
4.
Environ Geochem Health ; 45(3): 913-923, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35366716

RESUMO

Dissolved organic matter (DOM) plays an important role in promoting or suppressing methylmercury (MeHg) production in wetlands. However, the effects of DOM spectral characteristics on MeHg levels remain poorly understood in boreal peatlands in Northeast China, where is undergoing remarkable climate warming. In the present work, soil samples were collected from 22 peatlands in the Greater Khingan Mountains (GKM) to test the hypothesis that DOM spectral properties control MeHg levels. DOM was characterized by UV-Vis absorption and fluorescence spectroscopy; the three-dimensional fluorescence excitation-emission matrix (EEM) was used to unveil the origin of DOM. The average total mercury (THg) and MeHg contents were 112.76 µg/kg and 12.43 µg/kg across all peatlands, respectively. There was a significantly positive correlation between MeHg and the longitude spanning the range from 120 to 123°E (p < 0.05). Proportions of MeHg to THg (%MeHg), 12.3% on average, were positively correlated with DOM humification degree at p < 0.05 level. Protein-like components of DOM (P-like) were negatively related to %MeHg. DOM had positive effects on THg, and P-like components, HIX and BIX can negatively affect THg as well as MeHg. Our findings demonstrate that the spectral characteristics of DOM in soil are crucial to the content of methyl mercury in the GKM soil.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Matéria Orgânica Dissolvida , Mercúrio/análise , Solo/química , Espectrometria de Fluorescência , China
5.
J Xray Sci Technol ; 31(2): 247-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744360

RESUMO

OBJECTIVES: This study aims to develop and validate a radiomics nomogram based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to noninvasively predict axillary lymph node (ALN) metastasis in breast cancer. METHODS: This retrospective study included 263 patients with histologically proven invasive breast cancer and who underwent DCE-MRI examination before surgery in two hospitals. All patients had a defined ALN status based on pathological examination results. Regions of interest (ROIs) of the primary tumor and ipsilateral ALN were manually drawn. A total of 1,409 radiomics features were initially computed from each ROI. Next, the low variance threshold, SelectKBest, and least absolute shrinkage and selection operator (LASSO) algorithms were used to extract the radiomics features. The selected radiomics features were used to establish the radiomics signature of the primary tumor and ALN. A radiomics nomogram model, including the radiomics signature and the independent clinical risk factors, was then constructed. The predictive performance was evaluated by the receiver operating characteristic (ROC) curves, calibration curve, and decision curve analysis (DCA) by using the training and testing sets. RESULTS: ALNM rates of the training, internal testing, and external testing sets were 43.6%, 44.3% and 32.3%, respectively. The nomogram, including clinical risk factors (tumor diameter) and radiomics signature of the primary tumor and ALN, showed good calibration and discrimination with areas under the ROC curves of 0.884, 0.822, and 0.813 in the training, internal and external testing sets, respectively. DCA also showed that radiomics nomogram displayed better clinical predictive usefulness than the clinical or radiomics signature alone. CONCLUSIONS: The radiomics nomogram combined with clinical risk factors and DCE-MRI-based radiomics signature may be used to predict ALN metastasis in a noninvasive manner.


Assuntos
Neoplasias da Mama , Nomogramas , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Estudos Retrospectivos , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética/métodos
6.
J Environ Sci (China) ; 119: 50-58, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934465

RESUMO

Soil macroinvertebrates as ecosystem engineers play significant, but largely ignored, roles in affecting mercury (Hg) cycle by altering soil physical-chemical properties. Ant is likely expanded into boreal mires with climate warming, however, its impacts on Hg cycle remained poorly understood. We compared total Hg (THg) and methylmercury (MeHg) contents in soils from antmounds (Lasius flavus) and the nearby ambient in a boreal mire in Northeast China. The present work seeks to unravel factors that controlling MeHg levels in case of ant appearance or absence. The average THg was 179 µg/kg in the ant mound and was 106.1 µg/kg in nearby soils, respectively. The average MeHg was 10.9 µg/kg in the ant mound and was 12.9 µg/kg in nearby soils, respectively. The ratios of MeHg to THg (%MeHg) were 7.61% in ant mounds and 16.75% in nearby soils, respectively. Ant colonization caused THg enrichment and MeHg depletion, and this change was obvious in the 10-20 cm depth soil layer where ants mainly inhabited. Spectrometry characteristics of soil dissolved organic matter (DOM) exert a stronger control than microorganisms on MeHg variation in soils. A structural equation model revealed that the molecular weight of DOM inhibited MeHg irrespective of ant presence or absence, while humification conducive to MeHg significantly in ant mound soils. Microorganisms mainly affected Hg methylation by altering the molecular weight and humification of DOM. We propose that the effects of ant colonization on MeHg rested on DOM feature variations caused by microorganisms in boreal mires.


Assuntos
Formigas , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , China , Ecossistema , Monitoramento Ambiental/métodos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Solo/química , Poluentes Químicos da Água/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-33753338

RESUMO

The intestinal protozoan Cryptosporidium is a leading cause of diarrheal disease and mortality in young children. There is currently no fully effective treatment for cryptosporidiosis, which has stimulated interest in anticryptosporidial development over the last ∼10 years, with numerous lead compounds identified, including several tRNA synthetase inhibitors. Here, we report the results of a dairy calf efficacy trial of the methionyl-tRNA (Cryptosporidium parvum MetRS [CpMetRS]) synthetase inhibitor 2093 and the spontaneous emergence of drug resistance. Dairy calves experimentally infected with Cryptosporidium parvum initially improved with 2093 treatment, but parasite shedding resumed in two of three calves on treatment day 5. Parasites shed by each recrudescent calf had different amino acid-altering mutations in the gene encoding CpMetRS (CpMetRS), yielding either an aspartate 243-to-glutamate (D243E) or a threonine 246-to-isoleucine (T246I) mutation. Transgenic parasites engineered to have either the D243E or T246I CpMetRS mutation using CRISPR/Cas9 grew normally but were highly 2093 resistant; the D243E and T246I mutant-expressing parasites, respectively, had 2093 half-maximal effective concentrations (EC50s) that were 613- and 128-fold that of transgenic parasites with wild-type CpMetRS. In studies using recombinant enzymes, the D243E and T246I mutations shifted the 2093 IC50 >170-fold. Structural modeling of CpMetRS based on an inhibitor-bound Trypanosoma brucei MetRS crystal structure suggested that the resistance mutations reposition nearby hydrophobic residues, interfering with compound binding while minimally impacting substrate binding. This is the first report of naturally emerging Cryptosporidium drug resistance, highlighting the need to address the potential for anticryptosporidial resistance and establish strategies to limit its occurrence.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Criança , Pré-Escolar , Criptosporidiose/tratamento farmacológico , Cryptosporidium/genética , Cryptosporidium parvum/genética , Resistência a Medicamentos/genética , Fezes , Humanos
8.
J Antimicrob Chemother ; 75(5): 1218-1227, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32011682

RESUMO

BACKGROUND: Methionyl-tRNA synthetase (MetRS) inhibitors are under investigation for the treatment of intestinal infections caused by Giardia lamblia. OBJECTIVES: To properly analyse the therapeutic potential of the MetRS inhibitor 1717, experimental tools including a robust cell-based assay and a murine model of infection were developed based on novel strains of G. lamblia that employ luciferase reporter systems to quantify viable parasites. METHODS: Systematic screening of Giardia-specific promoters and luciferase variants led to the development of a strain expressing the click beetle green luciferase. Further modifying this strain to express NanoLuc created a dual reporter strain capable of quantifying parasites in both the trophozoite and cyst stages. These strains were used to develop a high-throughput cell assay and a mouse infection model. A library of MetRS inhibitors was screened in the cell assay and Compound-1717 was tested for efficacy in the mouse infection model. RESULTS: Cell viability in in vitro compound screens was quantified via bioluminescence readouts while infection loads in mice were monitored with non-invasive whole-animal imaging and faecal analysis. Compound-1717 was effective in clearing mice of Giardia infection in 3 days at varying doses, which was supported by data from enzymatic and phenotypic cell assays. CONCLUSIONS: The new in vitro and in vivo assays based on luciferase expression by engineered G. lamblia strains are useful for the discovery and development of new therapeutics for giardiasis. MetRS inhibitors, as validated by Compound-1717, have promising anti-giardiasis properties that merit further study as alternative therapeutics.


Assuntos
Giardia lamblia , Giardíase , Metionina tRNA Ligase , Animais , Giardíase/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Luciferases/genética , Camundongos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30745384

RESUMO

Cryptosporidiosis is one of the leading causes of moderate to severe diarrhea in children in low-resource settings. The therapeutic options for cryptosporidiosis are limited to one drug, nitazoxanide, which unfortunately has poor activity in the most needy populations of malnourished children and HIV-infected persons. We describe here the discovery and early optimization of a class of imidazopyridine-containing compounds with potential for treating Cryptosporidium infections. The compounds target the Cryptosporidium methionyl-tRNA synthetase (MetRS), an enzyme that is essential for protein synthesis. The most potent compounds inhibited the enzyme with Ki values in the low picomolar range. Cryptosporidium cells in culture were potently inhibited with 50% effective concentrations as low as 7 nM and >1,000-fold selectivity over mammalian cells. A parasite persistence assay indicates that the compounds act by a parasiticidal mechanism. Several compounds were demonstrated to control infection in two murine models of cryptosporidiosis without evidence of toxicity. Pharmacological and physicochemical characteristics of compounds were investigated to determine properties that were associated with higher efficacy. The results indicate that MetRS inhibitors are excellent candidates for development for anticryptosporidiosis therapy.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/efeitos dos fármacos , Imidazóis/farmacologia , Metionina tRNA Ligase/antagonistas & inibidores , Piridinas/farmacologia , Animais , Cryptosporidium parvum/genética , Ciclo-Oxigenase 1/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Feminino , Células Hep G2 , Humanos , Imidazóis/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piridinas/química
10.
Med Sci Monit ; 24: 5904, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30142144

RESUMO

In the article entitled, "Clinical Importance of Somatostatin Receptor 2 (SSTR2) and Somatostatin Receptor 5 (SSTR5) Expression in Thyrotropin-Producing Pituitary Adenoma (TSHoma)", which was published in Medical Science Monitor 2017-04-23, Med Sci Monit 2017; 23: 1947-1955, the text has been directly copied from a previously published article entitled, "Immunohistochemical expression of somatostatin receptor subtypes 2 and 5 in thyrotropin-secreting pituitary adenomas: a consecutive case series of pituitary adenomas" by Hong-Juan Fang, Yang-Fang Li, Yu Fu, Li-Yong Zhong, and Ya-Zhuo Zhan in Int J Clin Exp Pathol 2017;10(1): 479-488 (www.ijcep.com /ISSN: 1936-2625/IJCEP0042895). Thus, owing to the duplicity of text, the article is being retracted.

11.
Artigo em Inglês | MEDLINE | ID: mdl-28848016

RESUMO

Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 µg/ml against Staphylococcus, Enterococcus, and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Metionina tRNA Ligase/antagonistas & inibidores , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Proteínas Sanguíneas/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Escherichia coli/efeitos dos fármacos , Feminino , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Inativação Metabólica , Camundongos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos , Staphylococcus aureus/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-28533246

RESUMO

Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) is a promising target for drug development against cryptosporidiosis. We report a series of low-nanomolar CpCDPK1 5-aminopyrazole-4-carboxamide (AC) scaffold inhibitors that also potently inhibit C. parvum growth in vitro Correlation between anti-CpCDPK1 and C. parvum growth inhibition, as previously reported for pyrazolopyrimidines, was not apparent. Nonetheless, lead AC compounds exhibited a substantial reduction of parasite burden in the neonatal mouse cryptosporidiosis model when dosed at 25 mg/kg.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Antiprotozoários/química , Criptosporidiose/parasitologia , Cryptosporidium parvum/crescimento & desenvolvimento , Camundongos , Proteínas de Protozoários/metabolismo , Pirazóis/química , Pirazóis/farmacologia
13.
Bioorg Med Chem Lett ; 27(12): 2702-2707, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465105

RESUMO

Potent inhibitors of Trypanosoma brucei methionyl-tRNA synthetase were previously designed using a structure-guided approach. Compounds 1 and 2 were the most active compounds in the cyclic and linear linker series, respectively. To further improve cellular potency, SAR investigation of a binding fragment targeting the "enlarged methionine pocket" (EMP) was performed. The optimization led to the identification of a 6,8-dichloro-tetrahydroquinoline ring as a favorable fragment to bind the EMP. Replacement of 3,5-dichloro-benzyl group (the EMP binding fragment) of inhibitor 2 using this tetrahydroquinoline fragment resulted in compound 13, that exhibited an EC50 of 4nM.


Assuntos
Inibidores Enzimáticos/farmacologia , Metionina tRNA Ligase/antagonistas & inibidores , Metionina/farmacologia , Trypanosoma brucei brucei/enzimologia , Animais , Sítios de Ligação/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Células Hep G2 , Humanos , Metionina/administração & dosagem , Metionina/química , Metionina tRNA Ligase/metabolismo , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
14.
Med Sci Monit ; 23: 1947-1955, 2017 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-28434012

RESUMO

BACKGROUND Thyrotropin-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism. Somatostatin analogs have proved to be effective for inhibiting pituitary hormones secretion, working via interactions with somatostatin receptors (SSTRs). Moreover, antiproliferative activity of somatostatin analog is now demonstrated in several studies. In the present study, we determined the relative predominance of SSTR2 and SSTR5 subtypes among the different types of adenomas, especially TSHoma, and investigated the relationship between efficacy of short-term octreotide (OCT) treatment and SSTR expression. MATERIAL AND METHODS Serum hormone determinations and histological findings in resected tissue resulted in 5 diagnoses: 16 TSHomas, 8 acromegaly, 3 prolactinomas, 3 corticotropinomas, 4 clinically nonfunctioning adenomas (NFPAs), and 4 normal pituitary specimens. IHC was performed on formalin-fixed and paraffin-embedded tissue in tissue microarrays. RESULTS IHC of SSTR subtypes in the different cohorts showed SSTR2 staining intensity scores higher than SSTR5 in TSHoma, acromegaly and prolactinoma, whereas the expression of SSTR5 was stronger than SSTR2 in corticotropinoma and NFPA. SSTR2 and SSTR5 expressions were significantly higher in TSHoma than in other pituitary adenomas. OCT treatment for a median of 8.4 days (range: 3-18 days) and with a total median dose of 1.9 mg (range: 0.9-4.2 mg) showed a significant decrease of thyroid hormone levels (TSH [µIU/ml] in all patients. Patients with low SSTR5 expression presented a significantly higher TSH suppression rate (P values <0.05). CONCLUSIONS The present data confirm that somatostatin analogs should be considered as a medical alternative to surgical treatment, especially in patients with TSHoma, and short-term response to OCT therapy may be related to the expression of SSTR5.


Assuntos
Receptores de Somatostatina/genética , Adolescente , Adulto , Idoso , Feminino , Humanos , Hipertireoidismo/genética , Hipertireoidismo/metabolismo , Hipertireoidismo/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , RNA Mensageiro/metabolismo , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/fisiologia , Somatostatina/genética , Somatostatina/metabolismo , Tireotropina/genética , Tireotropina/metabolismo
15.
J Infect Dis ; 214(12): 1850-1855, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27738055

RESUMO

Cryptosporidium is recognized as one of the main causes of childhood diarrhea worldwide. However, the current treatment for cryptosporidiosis is suboptimal. Calcium flux is essential for entry in apicomplexan parasites. Calcium-dependent protein kinases (CDPKs) are distinct from protein kinases of mammals, and the CDPK1 of the apicomplexan Cryptosporidium lack side chains that typically block a hydrophobic pocket in protein kinases. We exploited this to develop bumped kinase inhibitors (BKIs) that selectively target CDPK1. We have shown that several BKIs of Cryptosporidium CDPK1 potently reduce enzymatic activity and decrease parasite numbers when tested in vitro. In the present work, we studied the anticryptosporidial activity of BKI-1517, a novel BKI. The half maximal effective concentration for Cryptosporidium parvum in HCT-8 cells was determined to be approximately 50 nM. Silencing experiments of CDPK1 suggest that BKI-1517 acts on CDPK1 as its primary target. In a mouse model of chronic infection, 5 of 6 SCID/beige mice (83.3%) were cured after treatment with a single daily dose of 120 mg/kg BKI-1517. No side effects were observed. These data support advancing BKI-1517 as a lead compound for drug development for cryptosporidiosis.


Assuntos
Antiprotozoários/administração & dosagem , Criptosporidiose/tratamento farmacológico , Hospedeiro Imunocomprometido , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Antiprotozoários/efeitos adversos , Antiprotozoários/isolamento & purificação , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Cryptosporidium parvum/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos SCID , Testes de Sensibilidade Parasitária , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/isolamento & purificação , Resultado do Tratamento
16.
J Physiol ; 594(1): 39-57, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26365250

RESUMO

KEY POINTS: In peripheral myelinated axons of mammalian spinal motor neurons, Ca(2+) influx was thought to occur only in pathological conditions such as ischaemia. Using Ca(2+) imaging in mouse large motor axons, we find that physiological stimulation with trains of action potentials transiently elevates axoplasmic [C(2+)] around nodes of Ranvier. These stimulation-induced [Ca(2+)] elevations require Ca(2+) influx, and are partially reduced by blocking T-type Ca(2+) channels (e.g. mibefradil) and by blocking the Na(+)/Ca(2+) exchanger (NCX), suggesting an important contribution of Ca(2+) influx via reverse-mode NCX activity. Acute disruption of paranodal myelin dramatically increases stimulation-induced [Ca(2+)] elevations around nodes by allowing activation of sub-myelin L-type (nimodipine-sensitive) Ca(2+) channels. The Ca(2+) that enters myelinated motor axons during normal activity is likely to contribute to several signalling pathways; the larger Ca(2+) influx that occurs following demyelination may contribute to the axonal degeneration that occurs in peripheral demyelinating diseases. Activity-dependent Ca(2+) signalling is well established for somata and terminals of mammalian spinal motor neurons, but not for their axons. Imaging of an intra-axonally injected fluorescent [Ca(2+)] indicator revealed that during repetitive action potential stimulation, [Ca(2+)] elevations localized to nodal regions occurred in mouse motor axons from ventral roots, phrenic nerve and intramuscular branches. These [Ca(2+)] elevations (∼ 0.1 µm with stimulation at 50 Hz, 10 s) were blocked by removal of Ca(2+) from the extracellular solution. Effects of pharmacological blockers indicated contributions from both T-type Ca(2+) channels and reverse mode Na(+)/Ca(2+) exchange (NCX). Acute disruption of paranodal myelin (by stretch or lysophosphatidylcholine) increased the stimulation-induced [Ca(2+)] elevations, which now included a prominent contribution from L-type Ca(2+) channels. These results suggest that the peri-nodal axolemma of motor axons includes multiple pathways for stimulation-induced Ca(2+) influx, some active in normally-myelinated axons (T-type channels, NCX), others active only when exposed by myelin disruption (L-type channels). The modest axoplasmic peri-nodal [Ca(2+)] elevations measured in intact motor axons might mediate local responses to axonal activation. The larger [Ca(2+) ] elevations measured after myelin disruption might, over time, contribute to the axonal degeneration observed in peripheral demyelinating neuropathies.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Nós Neurofibrosos/metabolismo , Animais , Axônios/metabolismo , Axônios/fisiologia , Canais de Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Nós Neurofibrosos/fisiologia , Trocador de Sódio e Cálcio/metabolismo
17.
Bioorg Med Chem Lett ; 26(22): 5487-5491, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780638

RESUMO

Plasmodium falciparum calcium-dependent protein kinase 4 (PfCDPK4) is essential for the exflagellation of male gametocytes. Inhibition of PfCDPK4 is an effective way of blocking the transmission of malaria by mosquitoes. A series of 5-aminopyrazole-4-carboxamide analogues are demonstrated to be potent inhibitors of PfCDPK4. The compounds are also able to block exflagellation of Plasmodium falciparum male gametocytes without observable toxicity to mammalian cells.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Proteínas Quinases/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Animais , Linhagem Celular , Culicidae/parasitologia , Humanos , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Masculino , Plasmodium falciparum/fisiologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1684-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249349

RESUMO

American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.


Assuntos
Inibidores Enzimáticos/química , Histidina-tRNA Ligase/antagonistas & inibidores , Histidina-tRNA Ligase/química , Bibliotecas de Moléculas Pequenas/química , Trypanosoma cruzi/enzimologia , Sítios de Ligação , Doença de Chagas/tratamento farmacológico , Doença de Chagas/microbiologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Histidina-tRNA Ligase/metabolismo , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/farmacologia , Trypanosoma cruzi/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
19.
Antimicrob Agents Chemother ; 59(11): 7128-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26324270

RESUMO

The methionyl-tRNA synthetase (MetRS) is a novel drug target for the protozoan pathogen Giardia intestinalis. This protist contains a single MetRS that is distinct from the human cytoplasmic MetRS. A panel of MetRS inhibitors was tested against recombinant Giardia MetRS, Giardia trophozoites, and mammalian cell lines. The best compounds inhibited trophozoite growth at 500 nM (metronidazole did so at ∼5,000 nM) and had low cytotoxicity against mammalian cells, indicating excellent potential for further development as anti-Giardia drugs.


Assuntos
Antiprotozoários/farmacologia , Giardia lamblia/efeitos dos fármacos , Metionina tRNA Ligase/antagonistas & inibidores , Trofozoítos/efeitos dos fármacos , Giardia lamblia/enzimologia , Metronidazol/farmacologia , Trofozoítos/enzimologia
20.
J Infect Dis ; 209(2): 275-84, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24123773

RESUMO

Malaria parasites are transmitted by mosquitoes, and blocking parasite transmission is critical in reducing or eliminating malaria in endemic regions. Here, we report the pharmacological characterization of a new class of malaria transmission-blocking compounds that acts via the inhibition of Plasmodia CDPK4 enzyme. We demonstrate that these compounds achieved selectivity over mammalian kinases by capitalizing on a small serine gatekeeper residue in the active site of the Plasmodium CDPK4 enzyme. To directly confirm the mechanism of action of these compounds, we generated P. falciparum parasites that express a drug-resistant methionine gatekeeper (S147 M) CDPK4 mutant. Mutant parasites showed a shift in exflagellation EC50 relative to the wild-type strains in the presence of compound 1294, providing chemical-genetic evidence that CDPK4 is the target of the compound. Pharmacokinetic analyses suggest that coformulation of this transmission-blocking agent with asexual stage antimalarials such as artemisinin combination therapy (ACT) is a promising option for drug delivery that may reduce transmission of malaria including drug-resistant strains. Ongoing studies include refining the compounds to improve efficacy and toxicological properties for efficient blocking of malaria transmission.


Assuntos
Antimaláricos/metabolismo , Inibidores Enzimáticos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/farmacocinética , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacocinética , Flagelos/efeitos dos fármacos , Flagelos/fisiologia , Camundongos , Plasmodium falciparum/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa