Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007369

RESUMO

We propose a scheme for achieving basic quantum gates using ultracold polar molecules in pendular states. The qubits are encoded in the YbF molecules trapped in an electric field with a certain gradient and coupled by the dipole-dipole interaction. The time-dependent control sequences consisting of multiple pulses are considered to interact with the pendular qubits. To achieve high-fidelity quantum gates, we map the control problem for the coupled molecular system into a Markov decision process and deal with it using the techniques of deep reinforcement learning (DRL). By training the agents over multiple episodes, the optimal control pulse sequences for the two-qubit gates of NOT, controlled NOT, and Hadamard are discovered with high fidelities. Moreover, the population dynamics of YbF molecules driven by the discovered gate sequences are analyzed in detail. Furthermore, by combining the optimal gate sequences, we successfully simulate the quantum circuit for entanglement. Our findings could offer new insights into efficiently controlling molecular systems for practical molecule-based quantum computing using DRL.

2.
J Chem Phys ; 159(20)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38010330

RESUMO

Quantum walks are the quantum counterpart of classical random walks and have various applications in quantum information science. Polar molecules have rich internal energy structure and long coherence time and thus are considered as a promising candidate for quantum information processing. In this paper, we propose a theoretical scheme for implementing discrete-time quantum walks on a circle with dipole-dipole coupled SrO molecules. The states of the walker and the coin are encoded in the pendular states of polar molecules induced by an external electric field. We design the optimal microwave pulses for implementing quantum walks on a four-node circle and a three-node circle by multi-target optimal control theory. To reduce the accumulation of decoherence and improve the fidelity, we successfully realize a step of quantum walk with only one optimal pulse. Moreover, we also encode the walker into a three-level molecular qutrit and a four-level molecular ququart and design the corresponding optimal pulses for quantum walks, which can reduce the number of molecules used. It is found that all the quantum walks on a circle in our scheme can be achieved via optimal control fields with high fidelities. Our results could shed some light on the implementation of discrete-time quantum walks and high-dimensional quantum information processing with polar molecules.

3.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677859

RESUMO

Charge scaling as an effective solution to the experiment-computation disagreement in molecular modelling of ionic liquids (ILs) could bring the computational results close to the experimental reference for various thermodynamic properties. According to the large-scale benchmark calculations of mass density, solvation, and water-ILs transfer-free energies in our series of papers, the charge-scaling factor of 0.8 serves as a near-optimal option generally applicable to most ILs, although a system-dependent parameter adjustment could be attempted for further improved performance. However, there are situations in which such a charge-scaling treatment would fail. Namely, charge scaling cannot really affect the simulation outcome, or minimally perturbs the results that are still far from the experimental value. In such situations, the vdW radius as an additional adjustable parameter is commonly tuned to minimize the experiment-calculation deviation. In the current work, considering two ILs from the quinuclidinium family, we investigate the impacts of this vdW-scaling treatment on the mass density and the solvation/partition thermodynamics in a fashion similar to our previous charge-scaling works, i.e., scanning the vdW-scaling factor and computing physical properties under these parameter sets. It is observed that the mass density exhibits a linear response to the vdW-scaling factor with slopes close to -1.8 g/mL. By further investigating a set of physiochemically relevant temperatures between 288 K and 348 K, we confirm the robustness of the vdW-scaling treatment in the estimation of bulk properties. The best vdW-scaling parameter for mass density would worsen the computation of solvation/partition thermodynamics, and a marginal decrease in the vdW-scaling factor is considered as an intermediate option balancing the reproductions of bulk properties and solvation thermodynamics. These observations could be understood in a way similar to the charge-scaling situation. i.e., overfitting some properties (e.g., mass density) would degrade the accuracy of the other properties (e.g., solvation free energies). Following this principle, the general guideline for applying this vdW-tuning protocol is by using values between the density-derived choice and the solvation/partition-derived solution. The charge and current vdW scaling treatments cover commonly encountered ILs, completing the protocol for accurate modelling of ILs with fixed-charge force fields.

4.
J Chem Phys ; 152(4): 044303, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007056

RESUMO

Ultracold polar molecules have been considered as the possible candidates for quantum information processing due to their long coherence time and strong dipole-dipole interaction. In this paper, we consider three coupled polar molecules arranged in a linear chain and trapped in an electric field with gradient. By employing the pendular states of polar molecules as qubits, we successfully realize three-qubit quantum gates and quantum algorithms via the multi-target optimal control theory. Explicitly speaking, through the designs of the optimal laser pulses with multiple iterations, the triqubit Toffoli gate, the triqubit quantum adders, and the triqubit quantum Fourier transform can be achieved in only one operational step with high fidelities and large transition probabilities. Moreover, by combining the optimized Hadamard, oracle, and diffusion gate pulses, we simulate the Grover algorithm in the three-dipole system and show that the algorithm can perform well for search problems. In addition, the behaviors of the fidelity and the average transition probability with respect to iteration numbers are compared and analyzed for each gate pulse. Our findings could pave the way toward scalability for molecular quantum computing based on the pendular states and could be extended to implement multi-particle gate operation in the molecular system.

5.
Opt Express ; 27(19): 26588-26599, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674537

RESUMO

Quantum entanglement and coherence are both essential physical resources in quantum theory. Cold polar molecules have long coherence time and strong dipole-dipole interaction and thus have been suggested as a platform for quantum information processing. In this paper, we employ the pendular states of the polar molecules trapped in static electric fields as the qubits, and put forward several theoretical schemes to generate the entanglement and coherence for two coupled dipoles by using optimal control theory. Through the designs of appropriate laser pulses, the transitions from the ground state to the Bell state and maximally coherent state can be realized with high fidelities 0.9906 and 0.9943 in the two-dipole system, respectively. Meanwhile, we show that the degrees of entanglement and coherence between the two pendular qubits are effectively enhanced with the help of optimized control fields. Furthermore, our schemes are generalized to the preparation of the Hardy state and even to the creation of arbitrary two-qubit states. Our findings can shed some light on the implementation of quantum information tasks with the molecular pendular states.

6.
J Chem Theory Comput ; 20(5): 1811-1820, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38320113

RESUMO

Polar molecules are a promising platform for achieving scalable quantum information processing because of their long-range electric dipole-dipole interactions. Here, we take the coupled ultracold CaF molecules in an external electric field with gradient as qubits and concentrate on the creation of intermolecular entanglement with the method of deep reinforcement learning (RL). After sufficient training episodes, the educated RL agents can discover optimal time-dependent control fields that steer the molecular systems from separate states to two-qubit and three-qubit entangled states with high fidelities. We analyze the fidelities and the negativities (characterizing entanglement) of the generated states as a function of training episodes. Moreover, we present the population dynamics of the molecular systems under the influence of control fields discovered by the agents. Compared with the schemes for creating molecular entangled states based on optimal control theory, some conditions (e.g., molecular spacing and electric field gradient) adopted in this work are more feasible in the experiment. Our results demonstrate the potential of machine learning to effectively solve quantum control problems in polar molecular systems.

7.
RSC Adv ; 8(63): 35928-35935, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-35558491

RESUMO

Einstein-Podolsky-Rosen (EPR) steering gives evidence for the phenomenon called "spooky action at a distance" in quantum mechanics, and provides a useful resource for the implementation of quantum information tasks. In this paper, we consider a pair of ultracold polar molecules trapped in an external electric field as a promising quantum information carrier, and analyze the evolution behavior of EPR steering for the two coupled polar molecules in pendular states. Our results show that the steering of the two linear dipoles is remarkably reliant upon the Stark effect and dipole-dipole interaction. To be specific, the steerability degree is inversely associated with the intensity of the electric field while it is positively correlated with the coupling strength between the two polar molecules. Moreover, it is found that high ambient temperature can lead to a rapid loss of the steerable resource in thermal equilibrium. Further, we put forward an effective strategy to enhance the steerability using the technique of weak measurement reversal (WMR). By taking into account the influence of intrinsic decoherence on the steering dynamics, we found that robust EPR steering preservation can be realized for the initial state being in the Bell state . Our findings may shed some new light on molecular quantum information processing with pendular states.

8.
Sci Rep ; 7(1): 17822, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259261

RESUMO

We consider two ultracold polar symmetric top molecules coupled by dipole-dipole interaction in an external electric field with appreciable intensity gradient, serving as the physical carrier of quantum information. Each molecule is induced to undergo pendular oscillations under the strong static electric field. Based on the pendular states of polar symmetric top molecules as candidate qubits, we investigate the bipartite quantum correlations of the two polar molecular system for the thermal equilibrium states, characterized by negativity and quantum discord, and then analyze the corresponding coherence, measured by relative entropy and l 1 norm. Furthermore, we also examine the dynamics of the entanglement and coherence of the system in the presence of intrinsic decoherence, and explore the relations of their temporal evolution with various physical system parameters for two different initial Bell states. It is found that quantum correlations and coherence of the two polar molecules in pendular states can be manipulated by adjusting appropriate reduced variables including external electric field, dipole-dipole interaction, ambient temperature and decoherence factor. Our findings could be used for molecular quantum computing based on rotational states.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa