Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO Rep ; 25(1): 228-253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177915

RESUMO

Cellular stresses elicit signaling cascades that are capable of either mitigating the inciting dysfunction or initiating cell death. During endoplasmic reticulum (ER) stress, the transcription factor CHOP is widely recognized to promote cell death. However, it is not clear whether CHOP also has a beneficial role during adaptation. Here, we combine a new, versatile, genetically modified Chop allele with single cell analysis and with stresses of physiological intensity, to rigorously examine the contribution of CHOP to cell fate. Paradoxically, we find that CHOP promotes death in some cells, but proliferation-and hence recovery-in others. Strikingly, this function of CHOP confers to cells a stress-specific competitive growth advantage. The dynamics of CHOP expression and UPR activation at the single cell level suggest that CHOP maximizes UPR activation, which in turn favors stress resolution, subsequent UPR deactivation, and proliferation. Taken together, these findings suggest that CHOP's function can be better described as a "stress test" that drives cells into either of two mutually exclusive fates-adaptation or death-during stresses of physiological intensity.


Assuntos
Estresse do Retículo Endoplasmático , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Estresse do Retículo Endoplasmático/genética , Morte Celular , Resposta a Proteínas não Dobradas
2.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35325186

RESUMO

Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.


Assuntos
Genoma Mitocondrial , Pulicaria , Animais , DNA Mitocondrial/genética , Daphnia/genética , Heteroplasmia , Pulicaria/genética , Recombinação Genética
3.
Proc Natl Acad Sci U S A ; 116(31): 15602-15609, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31320584

RESUMO

Daphnia normally reproduce by cyclical parthenogenesis, with offspring sex being determined by environmental cues. However, some females have lost the ability to produce males. Our results demonstrate that this loss of male-producing ability is controlled by a dominant allele at a single locus. We identified the locus by comparing whole-genome sequences of 67 nonmale-producing (NMP) and 100 male-producing (MP) clones from 5 Daphnia pulex populations, revealing 132 NMP-linked SNPs and 59 NMP-linked indels within a single 1.1-Mb nonrecombining region on chromosome I. These markers include 7 nonsynonymous mutations, all of which are located within one unannotated protein-coding gene (gene 8960). Within this single gene, all of the marker-linked NMP haplotypes from different populations form a monophyletic clade, suggesting a single origin of the NMP phenotype, with the NMP haplotype originating by introgression from a sister species, Daphnia pulicaria Methyl farnesoate (MF) is the innate juvenile hormone in daphnids, which induces the production of males and whose inhibition results in female-only production. Gene 8960 is sensitive to treatment by MF in MP clones, but such responsiveness is greatly reduced in NMP clones. Thus, we hypothesize that gene 8960 is located downstream of the MF-signaling pathway in D. pulex, with the NMP phenotype being caused by expression change of gene 8960.


Assuntos
Daphnia/fisiologia , Regulação da Expressão Gênica/fisiologia , Haplótipos , Hormônios Juvenis/metabolismo , Processos de Determinação Sexual/fisiologia , Transdução de Sinais/fisiologia , Animais , Ácidos Graxos Insaturados/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Processos de Determinação Sexual/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
BMC Genomics ; 20(1): 953, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818248

RESUMO

BACKGROUND: In contrast to the highly labile mitochondrial (mt) genomes of vascular plants, the architecture and composition of mt genomes within the main lineages of bryophytes appear stable and invariant. The available mt genomes of 18 liverwort accessions representing nine genera and five orders are syntenous except for Gymnomitrion concinnatum whose genome is characterized by two rearrangements. Here, we expanded the number of assembled liverwort mt genomes to 47, broadening the sampling to 31 genera and 10 orders spanning much of the phylogenetic breadth of liverworts to further test whether the evolution of the liverwort mitogenome is overall static. RESULTS: Liverwort mt genomes range in size from 147 Kb in Jungermanniales (clade B) to 185 Kb in Marchantiopsida, mainly due to the size variation of intergenic spacers and number of introns. All newly assembled liverwort mt genomes hold a conserved set of genes, but vary considerably in their intron content. The loss of introns in liverwort mt genomes might be explained by localized retroprocessing events. Liverwort mt genomes are strictly syntenous in genome structure with no structural variant detected in our newly assembled mt genomes. However, by screening the paired-end reads, we do find rare cases of recombination, which means multiple concurrent genome structures may exist in the vegetative tissues of liverworts. Our phylogenetic analyses of the nuclear encoded double stand break repair protein families revealed liverwort-specific subfamilies expansions. CONCLUSIONS: The low repeat recombination level, selection, along with the intensified nuclear surveillance, might together shape the structural evolution of liverwort mt genomes.


Assuntos
Genoma Mitocondrial/genética , Hepatófitas/classificação , Hepatófitas/genética , Recombinação Genética/genética , Briófitas/classificação , Briófitas/genética , DNA Mitocondrial/genética , Embriófitas/classificação , Embriófitas/genética , Evolução Molecular , Genes Mitocondriais , Variação Genética , Tamanho do Genoma , Íntrons/genética , Filogenia , Análise de Sequência de DNA , Sintenia
5.
Proc Natl Acad Sci U S A ; 113(18): E2498-505, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091991

RESUMO

Although it is well known that microbial populations can respond adaptively to challenges from antibiotics, empirical difficulties in distinguishing the roles of de novo mutation and natural selection have left several issues unresolved. Here, we explore the mutational properties of Escherichia coli exposed to long-term sublethal levels of the antibiotic norfloxacin, using a mutation accumulation design combined with whole-genome sequencing of replicate lines. The genome-wide mutation rate significantly increases with norfloxacin concentration. This response is associated with enhanced expression of error-prone DNA polymerases and may also involve indirect effects of norfloxacin on DNA mismatch and oxidative-damage repair. Moreover, we find that acquisition of antibiotic resistance can be enhanced solely by accelerated mutagenesis, i.e., without direct involvement of selection. Our results suggest that antibiotics may generally enhance the mutation rates of target cells, thereby accelerating the rate of adaptation not only to the antibiotic itself but to additional challenges faced by invasive pathogens.


Assuntos
Escherichia coli/genética , Genoma Bacteriano/genética , Instabilidade Genômica/genética , Mutagênese/genética , Mutação/genética , Norfloxacino/administração & dosagem , Antibacterianos/administração & dosagem , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Evolução Molecular , Genoma Bacteriano/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos
6.
BMC Genomics ; 19(1): 614, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107780

RESUMO

BACKGROUND: Mitochondrial genomes of flowering plants (angiosperms) are highly dynamic in genome structure. The mitogenome of the earliest angiosperm Amborella is remarkable in carrying rampant foreign DNAs, in contrast to Liriodendron, the other only known early angiosperm mitogenome that is described as 'fossilized'. The distinctive features observed in the two early flowering plant mitogenomes add to the current confusions of what early flowering plants look like. Expanded sampling would provide more details in understanding the mitogenomic evolution of early angiosperms. Here we report the complete mitochondrial genome of water lily Nymphaea colorata from Nymphaeales, one of the three orders of the earliest angiosperms. RESULTS: Assembly of data from Pac-Bio long-read sequencing yielded a circular mitochondria chromosome of 617,195 bp with an average depth of 601×. The genome encoded 41 protein coding genes, 20 tRNA and three rRNA genes with 25 group II introns disrupting 10 protein coding genes. Nearly half of the genome is composed of repeated sequences, which contributed substantially to the intron size expansion, making the gross intron length of the Nymphaea mitochondrial genome one of the longest among angiosperms, including an 11.4-Kb intron in cox2, which is the longest organellar intron reported to date in plants. Nevertheless, repeat mediated homologous recombination is unexpectedly low in Nymphaea evidenced by 74 recombined reads detected from ten recombinationally active repeat pairs among 886,982 repeat pairs examined. Extensive gene order changes were detected in the three early angiosperm mitogenomes, i.e. 38 or 44 events of inversions and translocations are needed to reconcile the mitogenome of Nymphaea with Amborella or Liriodendron, respectively. In contrast to Amborella with six genome equivalents of foreign mitochondrial DNA, not a single horizontal gene transfer event was observed in the Nymphaea mitogenome. CONCLUSIONS: The Nymphaea mitogenome resembles the other available early angiosperm mitogenomes by a similarly rich 64-coding gene set, and many conserved gene clusters, whereas stands out by its highly repetitive nature and resultant remarkable intron expansions. The low recombination level in Nymphaea provides evidence for the predominant master conformation in vivo with a highly substoichiometric set of rearranged molecules.


Assuntos
Genoma Mitocondrial , Mitocôndrias/genética , Nymphaea/genética , Recombinação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nymphaea/crescimento & desenvolvimento , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
8.
Pharmacol Res ; 104: 124-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26747400

RESUMO

The blood-brain barrier (BBB) keeps the central nervous system (CNS) safe from various brain diseases, while the BBB makes it difficult for effective drugs to enter the CNS. Mfsd2a is specifically expressed on the cell membrane of brain-microvascular endothelial cell (BMEC) and is implicated in the delivery of some substances across the BBB. Mfsd2a is the first inhibitor of the transcytosis and the first transporter for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA) in BMECs. The crucial dual function of Mfsd2a puts forward two kinds of Mfsd2a-based strategies for carrying drugs from blood to the CNS. First, the reversible inhibition of Mfsd2a may temporarily induce a general disinhibition of the transcytosis in BMECs to transport macromolecular drugs across the BBB (Strategy One). Second, Mfsd2a could be used for the transport of some small-molecule drugs chemically coupled to LPC across the BBB (Strategy Two), which is quite similar to the carrier-mediated transport (CMT) via the glucose transporter (GluT1) and the L-type amino acid transporter 1 (LAT1). We here analyze and discuss the clinical significance of the two Mfsd2a-based strategies, including therapeutic potential, available pharmaceuticals, side effects, administration procedures, and disease types. In summary, the regulatory role of Mfsd2a deepens our knowledge of the function of the BBB, potentially contributing to the effective drug delivery in the treatments for neurodegenerative diseases, brain tumors, and life-threatening infections in the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Transporte Biológico , Humanos , Preparações Farmacêuticas/metabolismo , Simportadores
9.
Biochem Biophys Res Commun ; 467(1): 103-8, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26408907

RESUMO

MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C2C12 myocytes by targeting the 3'-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Esforço Físico/genética , Esforço Físico/fisiologia , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Regulação para Baixo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética
10.
Cancer Biomark ; 36(4): 299-311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938729

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are central to determine immune response, thus targeting Tregs for immunotherapy is a promising strategy against tumor development and metastasis. OBJECTIVES: The objective of this study was to identify genes for targeting Tregs to improve the outcome of HCC. METHODS: We integrated expression data from different samples to remove batch effects and further applied embedding function in Scanpy to conduct sub-clustering of CD4+ T cells in HCC for each of two independent scRNA-seq data. The activity of transcription factors (TFs) was inferred by DoRothEA. Gene expression network analysis was performed in WGCNA R package. We finally used R packages (survminer and survival) to conduct survival analysis. Multiplex immunofluorescence analysis was performed to validate the result from bioinformatic analyses. RESULTS: We found that regulator of G protein signaling 1 (RGS1) expression was significantly elevated in Tregs compared to other CD4+ T cells in two independent public scRNA-seq datasets, and increased RGS1 predicted inferior clinical outcome of HCC patients. Multiplex immunofluorescence analysis supported that the higher expression of RGS1 in HCC Tregs in tumor tissue compared to it in adjacent tissue. Moreover, RGS1 expression in Tregs was positively correlated with the expression of marker genes of Tregs, C-X-C chemokine receptor 4 (CXCR4), and three CXCR4-dependent genes in both scRNA-seq and bulk RNA-seq data. We further identified that these three genes were selectively expressed in Tregs as compared to other CD4+ T cells. The activities of two transcription factors, recombination signal binding protein for immunoglobulin kappa J region (RBPJ) and yin yang 1 (YY1), were significantly different in HCC Tregs with RGS1 high and RGS1 low. CONCLUSIONS: Our findings suggested that RGS1 may regulate Treg function possibly through CXCR4 signaling and RGS1 could be a potential target to improve responses for immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas RGS , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação ao GTP , Neoplasias Hepáticas/metabolismo , Análise da Expressão Gênica de Célula Única , Linfócitos T Reguladores , Proteínas RGS/metabolismo
11.
BMJ Open Respir Res ; 10(1)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081768

RESUMO

BACKGROUND: The heterogeneity of lung adenocarcinoma (LUAD) plays a vital role in determining the development of cancer and therapeutic sensitivity and significantly hinders the clinical treatment of LUAD. OBJECTIVE: To elucidate the cellular composition and reveal previously uncharacterised tumour microenvironment in LUAD using single-cell RNA-sequencing (scRNA-seq). METHODS: Two scRNA-seq datasets with 106 829 high-quality cells from 34 patients including 11 normal, 9 early (stage I and II) and 14 advanced (stage III and IV) LUAD were integrated and clustered to explore diagnostic and therapeutic cell populations and their biomarkers for diverse stages of LUAD. Three independent bulk RNA-seq datasets were used to validate the results from scRNA-seq analysis. The expression of marker genes for specific cell types in early and advanced LUAD was verified by immunohistochemistry (IHC). RESULTS: Comprehensive cluster analysis identified that S100P+ epithelial and SPP1+ macrophage, positively related to poor outcomes, were preferentially enriched in advanced stage. Although the accumulation of KLRB1+CD8+ T cell and IGHA1+/IGHG1+ plasma cell both significantly associated the favourable prognosis, we also found KLRB1+CD8+ T cell decreased in advanced stage while IGHA1+/IGHG1+ plasma cells were increased. Cell-cell communication analysis showed that SPP1+ macrophage could interact with most of CD8+ subclusters through SPP1-CD44 axis. Furthermore, based on three independent bulk RNA-seq datasets, we built risk model with nine marker genes for specific cell subtypes and conducted deconvolution analysis, both supporting our results from scRNA-seq data. We finally validated the expression of four marker genes in early and advanced LUAD by IHC. CONCLUSION: Our analyses highlight the molecular dynamics of LUAD epithelial and microenvironment and provide new targets to improve LUAD therapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Microambiente Tumoral/genética , Adenocarcinoma de Pulmão/genética , Análise por Conglomerados , Neoplasias Pulmonares/genética , RNA
12.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993175

RESUMO

Cellular stresses elicit signaling cascades that are capable of either mitigating the inciting dysfunction or initiating cell death. During endoplasmic reticulum (ER) stress, the transcription factor CHOP is widely recognized to promote cell death. However, it is not clear whether CHOP also has a beneficial role during adaptation. Here, we have combined a new, versatile, genetically modified Chop allele with single cell analysis and with stresses of physiological intensity, to rigorously examine the contribution of CHOP to cell fate. Paradoxically, we found that CHOP promoted death in some cells, but proliferation-and hence recovery-in others. Strikingly, this function of CHOP conferred to cells a stress-specific competitive growth advantage. The dynamics of CHOP expression and UPR activation at the single cell level suggested that CHOP maximizes UPR activation, which in turn favors stress resolution, subsequent UPR deactivation, and proliferation. Taken together, these findings suggest that CHOP's function can be better described as a "stress test" that drives cells into either of two mutually exclusive fates-adaptation or death-during stresses of physiological intensity.

13.
J Mol Cell Biol ; 15(3)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36948605

RESUMO

YPEL5 is a member of the Yippee-like (YPEL) gene family that is evolutionarily conserved in eukaryotic species. To date, the physiological function of YPEL5 has not been assessed due to a paucity of genetic animal models. Here, using CRISPR/Cas9-mediated genome editing, we generated a stable ypel5-/- mutant zebrafish line. Disruption of ypel5 expression leads to liver enlargement associated with hepatic cell proliferation. Meanwhile, hepatic metabolism and function are dysregulated in ypel5-/- mutant zebrafish, as revealed by metabolomic and transcriptomic analyses. Mechanistically, Hnf4a is identified as a crucial downstream mediator that is positively regulated by Ypel5. Zebrafish hnf4a overexpression could largely rescue ypel5 deficiency-induced hepatic defects. Furthermore, PPARα signaling mediates the regulation of Hnf4a by Ypel5 through directly binding to the transcriptional enhancer of the Hnf4a gene. Herein, this work demonstrates an essential role of Ypel5 in hepatocyte proliferation and function and provides the first in vivo evidence for a physiological role of the ypel5 gene in vertebrates.

14.
Mol Ther Nucleic Acids ; 28: 190-201, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35402077

RESUMO

Colorectal neoplasia differentially expressed (CRNDE) is an oncogenic long noncoding RNA (lncRNA). Increased CRNDE expression was initially discovered in colorectal cancer and then in a variety of solid tumors and hematological malignancies. CRNDE participates in multiple biological processes, such as cell proliferation, differentiation, migration, and apoptosis. CRNDE has been shown to modulate target gene expression through multiple mechanisms, including transcriptional regulation, post-transcriptional regulation, and competition for microRNA (miRNA) binding. In this review, we summarize the evidence that supports CRNDE in the diagnosis and prognosis predicting of cancers. The functional roles and molecular mechanisms of CRNDE are further described for major types of solid tumors and hematological malignancies. The therapeutic potential of CRNDE as a target for research and development is also discussed.

15.
Front Med ; 16(6): 909-918, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36094653

RESUMO

In patients with acute promyelocytic leukemia (APL), intracranial hemorrhage (ICH), if not identified promptly, could be fatal. It is the leading cause of failure of induction and early death. Thus, biomarkers that could promptly predict severe complications are critical. Here, cytokine differences between patients with APL with and without ICH were investigated to develop predictive models for this complication. The initial cytokine profiling using plasma samples from 39 patients and 18 healthy donors found a series of cytokines that were remarkedly different between patients with APL and healthy controls. The APL patients were subsequently divided into high and low white blood cell count groups. Results showed that tumor necrosis factor a and interleukin 8 (IL-8) were vital in distinguishing patients with APL who did or did not develop ICH. In addition, verification in 81 patients with APL demonstrated that the two cytokines were positively correlated with the cumulative incidence of ICH. Finally, in-vitro and in-vivo experimental evidence were provided to show that IL-8 influenced the migration of APL-derived NB4 cells and impaired the blood-brain barrier in PML/RARα positive blast-transplanted FVB/NJ mice. These assessments may facilitate the early warning of ICH and reduce future mortality levels in APL.


Assuntos
Leucemia Promielocítica Aguda , Camundongos , Animais , Leucemia Promielocítica Aguda/complicações , Tretinoína/farmacologia , Interleucina-8 , Fator de Necrose Tumoral alfa , Citocinas , Hemorragias Intracranianas/etiologia , Proteínas de Fusão Oncogênica
16.
Exp Ther Med ; 20(2): 1782-1788, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32742409

RESUMO

Changes in the levels of interleukin-1ß (IL-1ß), cortisol and chromogranin A (CgA) in saliva of subjects with occupational fatigue were investigated. Doctors in the Emergency Department were selected as research subjects. Saliva was collected before work (after full rest) and after work (≥24 h). Electroencephalogram (EEG) was performed. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of IL-1ß, cortisol and CgA in saliva. In order to obtain permission for human specimens, the study was approved by the Ethics Committee of the Affiliated Hospital of Hebei University of Engineering and registered for clinical trials (registration no. ChiC-TR-DCD-14005746). As there were only 4 subjects in this study without fatigue waves in EEG, and the number of these subjects was not sufficient to constitute a control group, the comparison of the contents of IL-1ß, cortisol and CgA of all subjects before and after working for 18 h was just a confirmation of the statistical results of 43 cases with fatigue waves in the EEG. According to the results, there was no change in the contents of IL-1ß and cortisol in the saliva of subjects with occupational fatigue before and after fatigue, whereas, there was a significant change in the content of CgA before and after fatigue. However, there was no correlation between the content of CgA and fatigue. The results of the present study revealed that IL-1ß, cortisol and CgA indicators are not suitable diagnostic markers for occupational fatigue.

17.
Genome Biol Evol ; 11(11): 3233-3239, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651960

RESUMO

RNA editing occurs in the organellar mRNAs of all land plants but the marchantioid liverworts, making liverworts a perfect group for studying the evolution of RNA editing. Here, we profiled the RNA editing of 42 exemplars spanning the ordinal phylogenetic diversity of liverworts, and screened for the nuclear-encoded pentatricopeptide repeat (PPR) proteins in the transcriptome assemblies of these taxa. We identified 7,428 RNA editing sites in 128 organellar genes from 31 non-marchantioid liverwort species, and characterized 25,059 PPR protein sequences. The abundance of organellar RNA editing sites varies greatly among liverwort lineages, genes, and codon positions, and shows strong positive correlations with the GC content of protein-coding genes, and the diversity of the PLS class of nuclear PPR proteins.


Assuntos
Hepatófitas/genética , Filogenia , Edição de RNA/genética , Sequências de Repetição em Tandem/genética , Composição de Bases , Organelas/genética , Proteínas de Plantas/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-24491104

RESUMO

Simple sequence repeats (SSRs) are thought to be common in plant mitochondrial (mt) genomes, but have yet to be fully described for bryophytes. We screened the mt genomes of two liverworts (Marchantia polymorpha and Pleurozia purpurea), two mosses (Physcomitrella patens and Anomodon rugelii) and two hornworts (Phaeoceros laevis and Nothoceros aenigmaticus), and detected 475 SSRs. Some SSRs are found conserved during the evolution, among which except one exists in both liverworts and mosses, all others are shared only by the two liverworts, mosses or hornworts. SSRs are known as DNA tracts having high mutation rates; however, according to our observations, they still can evolve slowly. The conservativeness of these SSRs suggests that they are under strong selection and could play critical roles in maintaining the gene functions.


Assuntos
Briófitas/genética , Genoma Mitocondrial , Genoma de Planta , Repetições de Microssatélites/genética , Composição de Bases/genética , Sequência de Bases , Sequência Conservada/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Loci Gênicos , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética
19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 27(3): 321-4, 2005 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-16038268

RESUMO

OBJECTIVE: To determine the physiological role of D-bifunctional protein (DBP) in bile acid biosynthesis through investigating the effect of increasing activity of DBP on bile acid biosynthesis. METHODS: Twenty male Wistar rats were divided into two groups: diethylhexyl phthalate (DEHP) group (n = 10) and control group (n = 10). Serum triglyceride, total cholesterol, hepatic DBP activity, and fecal bile acids were assayed. The mRNA levels of hepatic peroxisome proliferator-activated receptor alpha (PPARalpha), DBP, and cholesterol 7alpha-hydroxylase (CYP7A1) were detected by RT-PCR. RESULTS: Compared with control group, serum triglyceride level was decreased significantly and PPARalphamRNA level was increased significantly in DEHP group (P < 0.01). Together with a sharp induction of DBP mRNA expression and DBP activity in DEHP group (P < 0.01), the levels of CYP7A1 mRNA and fecal bile acids were significantly increased by 1.9 times and 1.6 times respectively compared to control group (P < 0.01). There was a significantly positive correlation between DBP mRNA level or DBP activity and CYP7A1 mRNA level (r = 0.89, P < 0.01; r = 0.95, P < 0.01). CONCLUSION: The up-regulation of DBP mRNA and activity in liver can result in the increase in CYP7A1 mRNA expression and bile acid biosynthesis, suggesting that DBP may be involved in bile acid biosynthesis together with CYP7A1.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Ácidos e Sais Biliares/biossíntese , Enoil-CoA Hidratase/metabolismo , Fígado/metabolismo , Complexos Multienzimáticos/metabolismo , Animais , Colesterol 7-alfa-Hidroxilase/análise , Masculino , PPAR alfa/análise , Proteína Multifuncional do Peroxissomo-2 , RNA Mensageiro/análise , Distribuição Aleatória , Ratos , Ratos Wistar
20.
Am J Med Sci ; 349(6): 516-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25789687

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) plays a critical role in the pathogenesis of diabetic microvascular complications. Finasteride has been confirmed to decrease VEGF expression in prostate and prostatic suburethral tissue resulting in limiting hematuria from human benign prostatic hyperplasia. The purpose of this study was to evaluate the effects of finasteride on microvessel density (MVD), VEGF protein and mRNA expressions in the renal tissue of diabetic rats. METHODS: Diabetic rats induced by streptozotocin were intragastrically given finasteride at 30 mg/kg body weight once a day for 4 weeks. Histomorphologic changes in kidney were observed under light microscope. Immunohistochemistry for CD34 and VEGF on kidney sections was performed to assess MVD and VEGF protein expression in glomeruli of rats, respectively. The VEGF mRNA expression in the renal tissue was examined using reverse transcription polymerase chain reaction analysis. RESULTS: The glomerular tuft area, glomerular volume, MVD, VEGF protein expression in glomeruli and VEGF mRNA expression in the renal cortex tissue were significantly increased in diabetic rats and finasteride-treated rats when compared with controls (P < 0.01, P < 0.05). When compared with diabetic rats, the glomerular tuft area, glomerular volume, MVD, VEGF protein expression in glomeruli and VEGF mRNA expression in the renal cortex tissue of finasteride-treated rats were significantly decreased (P < 0.05, P < 0.01). CONCLUSIONS: Finasteride reduces the VEGF expression and decreases the MVD in the renal tissue of diabetic rats, suggesting the therapeutic potential of finasteride on diabetic microvascular complications.


Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Diabetes Mellitus Experimental , Finasterida/farmacologia , Glomérulos Renais , Microvasos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Regulação da Expressão Gênica , Humanos , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Microvasos/metabolismo , Microvasos/patologia , Microvasos/fisiopatologia , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa