Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 65(9): 702-710, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659103

RESUMO

One main challenge for phosphate cathodes in sodium-ion batteries (SIBs) is to increase the working voltage and energy density to promote its practicability. Herein, an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells. It is revealed that, carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles (i.e., shorten the Na+-migration path), but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage (from 3.59 to 3.71 V) and energy density (from 336.0 to 428.5 Wh kg-1) of phosphate cathode material. As a result, when used as cathode for SIBs, the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity (115.9 vs. 93.5 mAh g-1), more outstanding high-rate capability (e.g., 87.3 vs. 60.5 mAh g-1 at 10 C), higher energy density, and better cycling performance, compared to pristine Na3V2(PO4)2F3. Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating, improved electrode kinetics and electronic conductivity, and high stability of lattice, which is elucidated clearly through the contrastive characterization and electrochemical studies. Moreover, excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications.

2.
ACS Appl Mater Interfaces ; 12(42): 47580-47589, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32969641

RESUMO

Sodium-ion batteries (SIBs) are heralded as promising candidates for grid-scale energy storage systems due to their low cost and abundant sodium resources. Excellent rate capacity and outstanding cycling stability are always the goals for SIBs. Up to now, nearly all attention has been focused on the control of morphology and structure of electrode materials, but the influence of binders on their performance is neglected, especially in cathode materials. Herein, using Na3V2(PO4)2O2F (NVPOF) as a cathode material, the influence of four different binders (sodium alginate, SA; carboxymethylcellulose sodium, CMC; poly(vinylidene fluoride), PVDF; and poly(acrylic latex), LA133) on its electrochemical performance is studied. As a result, when using SA as the binder, the electrochemical performance of the NVPOF electrode is improved significantly, which is mainly because of the high water solubility, rich carboxyl and hydroxyl groups, and high adhesive and cohesive properties of the SA binder, leading to the uniform distribution of active materials NVPOF and carbon black in electrodes, good integrity, low polarization, and superior kinetic properties of the NVPOF electrodes, as demonstrated by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique. More importantly, when coupled with a hard carbon anode, the fabricated sodium-ion full cells also exhibit excellent rate performance, thus providing a preview of their practical application. This work shows that the battery performance can be improved by matching suitable binder systems, which is believed to have great importance for the further optimization of the electrochemical performance of SIBs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa