Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Immunol ; 17(10): 1167-75, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548433

RESUMO

CD8α(+) dendritic cells (DCs) are specialized at cross-presenting extracellular antigens on major histocompatibility complex (MHC) class I molecules to initiate cytotoxic T lymphocyte (CTL) responses; however, details of the mechanisms that regulate cross-presentation remain unknown. We found lower expression of the lectin family member Siglec-G in CD8α(+) DCs, and Siglec-G deficient (Siglecg(-/-)) mice generated more antigen-specific CTLs to inhibit intracellular bacterial infection and tumor growth. MHC class I-peptide complexes were more abundant on Siglecg(-/-) CD8α(+) DCs than on Siglecg(+/+) CD8α(+) DCs. Mechanistically, phagosome-expressed Siglec-G recruited the phosphatase SHP-1, which dephosphorylated the NADPH oxidase component p47(phox) and inhibited the activation of NOX2 on phagosomes. This resulted in excessive hydrolysis of exogenous antigens, which led to diminished formation of MHC class I-peptide complexes for cross-presentation. Therefore, Siglec-G inhibited DC cross-presentation by impairing such complex formation, and our results add insight into the regulation of cross-presentation in adaptive immunity.


Assuntos
Apresentação Cruzada , Células Dendríticas/imunologia , Lectinas/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Neoplasias Experimentais/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos/metabolismo , Antígenos CD8/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Lectinas/genética , Ativação Linfocitária , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Fragmentos de Peptídeos/metabolismo , Fagocitose/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Transdução de Sinais , Carga Tumoral/genética
2.
Nat Immunol ; 17(7): 806-15, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27240213

RESUMO

The DNA methyltransferase Dnmt3a has high expression in terminally differentiated macrophages; however, its role in innate immunity remains unknown. Here we report that deficiency in Dnmt3a selectively impaired the production of type I interferons triggered by pattern-recognition receptors (PRRs), but not that of the proinflammatory cytokines TNF and IL-6. Dnmt3a-deficient mice exhibited enhanced susceptibility to viral challenge. Dnmt3a did not directly regulate the transcription of genes encoding type I interferons; instead, it increased the production of type I interferons through an epigenetic mechanism by maintaining high expression of the histone deacetylase HDAC9. In turn, HDAC9 directly maintained the deacetylation status of the key PRR signaling molecule TBK1 and enhanced its kinase activity. Our data add mechanistic insight into the crosstalk between epigenetic modifications and post-translational modifications in the regulation of PRR signaling and activation of antiviral innate immune responses.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Imunidade Inata , Macrófagos/imunologia , Infecções por Rhabdoviridae/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Acetilação , Animais , DNA Metiltransferase 3A , Epigênese Genética , Células HEK293 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Interferon Tipo I/metabolismo , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo , Células RAW 264.7 , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
3.
Org Biomol Chem ; 22(18): 3611-3614, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38630011

RESUMO

Herein, we report that prism[6]arenes (PrS[6]R) can form charge-transfer (CT) inclusion complexes with tropylium tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate (G) in chloroform solution with an obvious CT band at 560 nm. Moreover, the CT complex PrS[6]Et⊃G showed Cl-/Ag+ responsiveness which can be easily monitored by the naked eye.

5.
Nature ; 525(7569): 389-393, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26287468

RESUMO

Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IκBζ, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IκBζ at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desacetilase 2/metabolismo , Inflamação/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Proteínas Proto-Oncogênicas/metabolismo , Acetilação , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Colite/enzimologia , Colite/imunologia , Colite/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/deficiência , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Dioxigenases , Regulação para Baixo/genética , Epigênese Genética , Feminino , Células HEK293 , Histonas/química , Histonas/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Inflamação/enzimologia , Inflamação/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/deficiência , Transcrição Gênica
6.
J Org Chem ; 83(15): 7900-7906, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29893129

RESUMO

A novel C(sp3)-H bond arylation of benzyl ethers with Knochel-type arylzinc reagents has been developed. This transition-metal-catalyst-free reaction proceeds well under mild conditions in a simple and effective manner and enables the synthesis of a wide range of potentially biologically active benzyl ethers by using highly functionalized organozinc reagents as a carbon nucleophile.

7.
J Immunol ; 196(3): 1209-17, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695369

RESUMO

Retinoic acid-inducible gene I (RIG-I) signaling is critical to host innate immune response against RNA virus infection. Numerous factors use different mechanisms to regulate RIG-I signaling. In this study, we report that STAT family member STAT4 promotes RIG-I-triggered type I IFN production in antiviral innate immunity. Silencing of STAT4 impaired IFN-ß production in macrophages upon RNA virus infection, whereas overexpression of STAT4 enhanced RIG-I-induced IFN-ß promoter activation and IFN-stimulated response element activity. Silencing of STAT4 increased degradation of RIG-I. Interestingly, during RNA virus infection STAT4 was found to be constantly present in cytoplasm of macrophages without Tyr(693) phosphorylation, which is required for its classical activation and nuclear translocation. Mechanistically, cytoplasmic STAT4 could interact with E3 ligase CHIP and block RIG-I and CHIP association, preventing CHIP-mediated proteasomal degradation of RIG-I via K48-linked ubiquitination. Our study provides a new manner for posttranslational regulation of RIG-I signaling and identifies a previously unknown function of cytoplasm-localized STAT4 in antiviral innate immunity.


Assuntos
RNA Helicases DEAD-box/imunologia , Interferon Tipo I/biossíntese , Macrófagos Peritoneais/imunologia , Infecções por Vírus de RNA/imunologia , Fator de Transcrição STAT4/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Citoplasma/imunologia , Citoplasma/metabolismo , Proteína DEAD-box 58 , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Células HEK293 , Humanos , Imunidade Inata/imunologia , Imunoprecipitação , Macrófagos Peritoneais/virologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Transfecção
9.
J Immunol ; 194(6): 2838-46, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25687760

RESUMO

Histone modifications play critical roles in the regulation of gene expression; however, their roles in the regulation of the innate response remain to be fully investigated. Using transcriptome analysis of mouse immature dendritic cells (DCs) and LPS-induced mature DCs, we identified that Ezh1 was the most upregulated histone methyltransferase during DC maturation. In this study, we investigated the role of Ezh1 in regulating the innate immune response. We found that silencing of Ezh1 significantly suppressed TLR-triggered production of cytokines, including IL-6, TNF-α, and IFN-ß, in DCs and macrophages. Accordingly, TLR-activated signaling pathways were impaired in Ezh1-silenced macrophages. By transcriptome analysis of Ezh1-silenced macrophages, we found that Toll-interacting protein (Tollip), one well-known negative regulator of TLR signaling, was upregulated. Silencing of Tollip rescued TLR-triggered cytokine production in Ezh1-silenced macrophages. The SET domain of Ezh1 is essential for its enhancing effect on the TLR-triggered innate immune response and downstream signaling, indicating that Ezh1 promotes a TLR-triggered innate response through its lysine methyltransferase activity. Finally, Ezh1 was found to suppress the transcription of Tollip by directly targeting the proximal promoter of tollip and maintaining the high level of trimethylation of histone H3 lysine 27 there. Therefore, Ezh1 promotes TLR-triggered inflammatory cytokine production by suppressing the TLR negative regulator Tollip, contributing to full activation of the innate immune response against invading pathogens.


Assuntos
Citocinas/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Complexo Repressor Polycomb 2/imunologia , Receptores Toll-Like/imunologia , Animais , Western Blotting , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Histonas/imunologia , Histonas/metabolismo , Imunidade Inata/genética , Imunidade Inata/imunologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Lisina/imunologia , Lisina/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Poli I-C/imunologia , Poli I-C/farmacologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Ligação Proteica/imunologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Transcriptoma/imunologia
10.
J Biol Chem ; 289(13): 9372-9, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550390

RESUMO

As a multifunctional nuclear protein, death domain-associated protein 6 (Daxx) regulates a wide range of biological processes, including cell apoptosis and gene transcription. However, the function of Daxx in innate immunity remains unclear. In our study, we show that Daxx is highly expressed in macrophages and localized in nucleus of macrophages. The expression of Daxx is significantly up-regulated by stimulation with TLR ligands LPS and poly(I:C). Silence of Daxx selectively represses IL-6 expression at transcription level in LPS-activated macrophages. Upon stimulation of LPS, Daxx specifically binds to the promoter of IL-6 and inhibits histone acetylation at IL-6 promoter region. Further mechanism analyses show that histone deacetylase 1 (HDAC1) interacts with Daxx and binds to the promoter of IL-6. Daxx silencing decreases the association of HDAC1 to IL-6 promoter. Therefore, our data reveal that Daxx selectively represses IL-6 transcription through HDAC1-mediated histone deacetylation in LPS-induced macrophages, acting as a negative regulator of IL-6 during innate immunity and potentially preventing inflammatory response because of overproduction of IL-6.


Assuntos
Proteínas de Transporte/metabolismo , Epigênese Genética , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Interleucina-6/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Transcrição Gênica/genética , Acetilação/efeitos dos fármacos , Animais , Proteínas Correpressoras , Epigênese Genética/efeitos dos fármacos , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares , Regiões Promotoras Genéticas/genética , Receptores Toll-Like/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Int J Biol Macromol ; 273(Pt 1): 132782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825284

RESUMO

Amidoxime groups were successfully introduced to develop a novel amidoxime-functionalized cellulose fiber (AO-Cell) for absorptive removal of heavy metal ions in wastewater. The chemical structure, and the competitive adsorption of Cu2+ and Zn2+ by AO-Cell were investigated by experiments study, Density functional theory (DFT) and molecular dynamic (MD) simulation. The results showed the N and O atoms in the amidoxime group can spontaneously interact with Cu2+ and Zn2+ through sharing long pair electrons to generate stable coordination structure, which was the dominant adsorption mechanism. Besides, the enlarged surface area, improved hydrophilicity and dispersion offered by AO-Cell facilitate the adsorption process by increasing the accessibility of absorption sites. As results of these synergetic modification, AO-Cell can remain effective in a wide pH range (1-6) and reach adsorption equilibrium within 60 min. At optimal conditions, the achieved theoretical adsorption capacity is as high as 84.81 mg/g for Cu2+ and 61.46 mg/g for Zn2+ in the solution with multiple ions. The competition between Cu2+ and Zn2+ in occupying the absorption sites arises from the difference in the metallic ion affinity and covalent index with the adsorbent as demonstrated by the MD analysis. Importantly, AO-Cell demonstrated favorable recyclability after up to 10 adsorption-desorption cycles.


Assuntos
Celulose , Cobre , Zinco , Zinco/química , Cobre/química , Celulose/química , Adsorção , Poluentes Químicos da Água/química , Simulação de Dinâmica Molecular , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Águas Residuárias/química
12.
Sci Total Environ ; 947: 174459, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964397

RESUMO

In this study, coal-based solid waste geopolymer mortar (SWCB) was prepared by using granulated ground blast-furnace slag (GGBS) and coal gasification coarse slag (CGCS) as precursors, and soda residue (SR) and phosphogypsum (PG) as activators, with gangue sand (GS) utilized as an inert filler. The corresponding compressive strength, fluidity, ion leaching, and microstructure of the developed SWCB were systematically investigated under varying solid contents, binder-to-sand ratios, and activator ratios. The findings suggest that the incorporation of activators promoted the dissolution of the silicon-aluminum phase in GGBS and CGCS into Al(OH)4-, [SiO(OH)3]-, and [SiO2(OH)2]2-, which could subsequently react with the Ca2+ and SO42- released by PG, forming AFt and C-(A)-S-H, thereby playing a crucial role in enhancing matrix strength. AFt was the predominant hydration product in the early reaction stage. The morphology of the AFt phase evolved from needle-like or filamentous to fine and coarse rods as hydration progressed. Initially, the formation of C-(A)-S-H gel increased with rising activator content before decreasing. The optimal synergy between AFt and C-(A)-S-H was observed at an activator content of 30 %. However, the growth of gypsum crystals was hindered when the activator content surpassed 30 %, resulting in a plate-like or columnar morphology. C-(A)-S-H gel exhibited remarkable adsorption capability towards P atoms attributed to intermolecular Van der Waal's forces, enabling simultaneous physical encapsulation of P atoms, while Cl element immobilization was primarily attributed to the contribution of SiOH sites to Cl adsorption.

13.
Front Cell Dev Biol ; 11: 1151838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123401

RESUMO

Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote ß-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.

14.
Biomed Pharmacother ; 168: 115632, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806094

RESUMO

Spinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response. Recently, Mesenchymal Stem Cells (MSCs) have shown significant therapeutic potential in tissue engineering and regenerative medicine due to their potential multidirectional differentiation and immunomodulatory properties. Accumulating evidence shows that MSCs can regulate the balance of M1/M2 macrophage polarization, suppress downstream inflammatory responses, facilitate tissue repair and regeneration, and improve the prognosis of SCI. This article briefly overviews the impact of macrophages and MSCs on SCI and repair. It discusses the mechanisms by which MSCs regulate macrophage plasticity, including paracrine action, release of exosomes and apoptotic bodies, and metabolic reprogramming. Additionally, the article summarizes the relevant signaling pathways of MSCs that regulate macrophage polarization.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Diferenciação Celular , Exossomos/metabolismo , Medula Espinal/metabolismo
15.
J Inflamm Res ; 16: 4763-4776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881652

RESUMO

Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.

16.
Front Cell Dev Biol ; 11: 1293101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38178870

RESUMO

Vitiligo is a skin pigmentation disorder caused by melanocyte damage or abnormal function. Reac-tive oxygen species Reactive oxygen species can cause oxidative stress damage to melanocytes, which in turn induces vitiligo. Traditional treatments such as phototherapy, drugs, and other methods of treatment are long and result in frequent recurrences. Currently, mesenchymal stem cells (MSCs) are widely used in the research of various disease treatments due to their excellent paracrine effects, making them a promising immunoregulatory and tissue repair strategy. Furthermore, an increasing body of evi-dence suggests that utilizing the paracrine functions of MSCs can downregulate oxidative stress in the testes, liver, kidneys, and other affected organs in animal models of certain diseases. Addition-ally, MSCs can help create a microenvironment that promotes tissue repair and regeneration in are-as with oxidative stress damage, improving the disordered state of the injured site. In this article, we review the pathogenesis of oxidative stress in vitiligo and promising strategies for its treatment.

17.
Elife ; 112022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132953

RESUMO

Mechanical stimulation, such as physical exercise, is essential for bone formation and health. Here, we demonstrate the critical role of osteocytic Cx43 hemichannels in anabolic function of bone in response to mechanical loading. Two transgenic mouse models, R76W and Δ130-136, expressing dominant-negative Cx43 mutants in osteocytes were adopted. Mechanical loading of tibial bone increased cortical bone mass and mechanical properties in wild-type and gap junction-impaired R76W mice through increased PGE2, endosteal osteoblast activity, and decreased sclerostin. These anabolic responses were impeded in gap junction/hemichannel-impaired Δ130-136 mice and accompanied by increased endosteal osteoclast activity. Specific inhibition of Cx43 hemichannels by Cx43(M1) antibody suppressed PGE2 secretion and impeded loading-induced endosteal osteoblast activity, bone formation and anabolic gene expression. PGE2 administration rescued the osteogenic response to mechanical loading impeded by impaired hemichannels. Together, osteocytic Cx43 hemichannels could be a potential new therapeutic target for treating bone loss and osteoporosis.


Assuntos
Remodelação Óssea , Osso e Ossos/fisiologia , Conexina 43/metabolismo , Prostaglandinas/metabolismo , Animais , Fenômenos Biomecânicos , Conexina 43/genética , Dinoprostona/metabolismo , Junções Comunicantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Osteócitos/metabolismo , Estresse Mecânico , Suporte de Carga
18.
Bone Res ; 10(1): 49, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851577

RESUMO

Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic ß-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.

19.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503103

RESUMO

ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.

20.
Mol Oncol ; 15(10): 2702-2714, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33694305

RESUMO

Screening for early-stage disease is vital for reducing colorectal cancer (CRC)-related mortality. Methylation of circulating tumor DNA has been previously used for various types of cancer screening. A novel cell-free DNA (cfDNA) methylation-based model which can improve the early detection of CRC is warranted. For our study, we collected 313 tissue and 577 plasma samples from patients with CRC, advanced adenoma (AA), non-AA and healthy controls. After quality control, 187 tissue DNA samples (91 non-malignant tissue from CRC patients, 26 AA and 70 CRC) and 489 plasma cfDNA samples were selected for targeted DNA methylation sequencing. We further developed a cfDNA methylation model based on 11 methylation biomarkers for CRC detection in the training cohort (area under curve [AUC] = 0.90 (0.85-0.94]) and verified the model in the validation cohort (AUC = 0.92 [0.88-0.96]). The cfDNA methylation model robustly detected patients pre-diagnosed with early-stage CRC (AUC = 0.90 [0.86-0.95]) or AA (AUC = 0.85 [0.78-0.91]). Here we established and validated a non-invasive cfDNA methylation model based on 11 DNA methylation biomarkers for the detection of early-stage CRC and AA. The utilization of the model in clinical practice may contribute to the early diagnosis of CRC.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metilação de DNA/genética , Detecção Precoce de Câncer , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa