RESUMO
Objectives: Temozolomide (TMZ) resistance is a key factor that restricts the therapeutic effect of glioblastoma (GBM). YTH-domain family member 2 (YTHDF2) is highly expressed in GBM tissues, while the mechanism of YTHDF2 in TMZ resistance in GBM remains not fully elucidated. Methods: The YTHDF2 expression in TMZ-resistant tissues and cells was detected. Kaplan-Meier analysis was employed to evaluate the prognostic value of YTHDF2 in GBM. Effect of YTHDF2 in TMZ resistance in GBM was explored via corresponding experiments. RNA sequence, FISH in conjugation with fluorescent immunostaining, RNA immunoprecipitation, dual-luciferase reporter gene and immunofluorescence were applied to investigate the mechanism of YTHDF2 that boosted TMZ resistance in GBM. Results: YTHDF2 was up-regulated in TMZ-resistant tissues and cells, and patients with high expression of YTHDF2 showed lower survival rate than the patients with low expression of YTHDF2. The elevated YTHDF2 expression boosted TMZ resistance in GBM cells, and the decreased YTHDF2 expression enhanced TMZ sensitivity in TMZ-resistant GBM cells. Mechanically, YTHDF2 bound to the N6-methyladenosine (m6A) sites in the 3'UTR of EPHB3 and TNFAIP3 to decrease the mRNA stability. YTHDF2 activated the PI3K/Akt and NF-κB signals through inhibiting expression of EPHB3 and TNFAIP3, and the inhibition of the two pathways attenuated YTHDF2-mediated TMZ resistance. Conclusion: YTHDF2 enhanced TMZ resistance in GBM by activation of the PI3K/Akt and NF-κB signalling pathways via inhibition of EPHB3 and TNFAIP3.
RESUMO
During neurological surgery, neurosurgeons have to transform the two-dimensional (2D) sectional images into three-dimensional (3D) structures at the cognitive level. The complexity of the intracranial structures increases the difficulty and risk of neurosurgery. Mixed reality (MR) applications reduce the obstacles in the transformation from 2D images to 3D visualization of anatomical structures of central nervous system. In this study, the holographic image was established by MR using computed tomography (CT), computed tomography angiography (CTA) and magnetic resonance imaging (MRI) data of patients. The surgeon's field of vision was superimposed with the 3D model of the patient's intracranial structure displayed on the mixed reality head-mounted display (MR-HMD). The neurosurgeons practiced and evaluated the feasibility of this technique in neurosurgical cases. We developed the segmentation image masks and texture mapping including brain tissue, intracranial vessels, nerves, tumors, and their relative positions by MR technologies. The results showed that the three-dimensional imaging is in a stable state in the operating room with no significant flutter and blur. And the neurosurgeon's feedback on the comfort of the equipment and the practicality of the technology was satisfactory. In conclusion, MR technology can holographically construct a 3D digital model of patient's lesions and improve the anatomical perception of neurosurgeons during craniotomy. The feasibility of the MR-HMD application in neurosurgery is confirmed.
Assuntos
Craniotomia/métodos , Holografia/métodos , Cirurgia Assistida por Computador/métodos , Idoso , Neoplasias Encefálicas/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodosRESUMO
Inflammation and immunoreaction markers were correlated with the survival of patients in many tumors. However, there were no reports investigating the relationships between preoperative hematological markers and the prognosis of medulloblastoma (MB) patients based on the molecular subgroups (WNT, SHH, Group 3, and Group 4). A total 144 MB patients were enrolled in the study. The differences of preoperative hematological markers among molecular subgroups of MB were compared by One-way ANOVA method. Kaplan-Meier method was used to calculate the curves of progression free survival (PFS) and overall survival (OS). The comparison of survival rates in different groups were conducted by the Log-rank test. Multivariate analysis was used to evaluate independent prognostic factors. Increased preoperative NLR (neutrophil-to-lymphocyte ratio, PFS, P = 0.004, OS, P < 0.001) and PLR (platelet-to-lymphocyte ratio, PFS, P = 0.028, OS, P = 0.003) predicted poor prognosis in patients with MB, while preoperative MLR (monocyte-to-lymphocyte ratio), MPV (mean platelet volume), PDW (platelet distribution width), and AGR (albumin-to-globulin ratio) were revealed no predictive value on the prognosis of patients with MB. Furthermore, high preoperative NLR and PLR predicted unfavorable prognosis in childhood MB patients. However, preoperative NLR and PLR were not associated with the prognosis in adult MB patients. Multivariate analysis demonstrated preoperative NLR (PFS, P = 0.029, OS, P = 0.005) and PLR (PFS, P = 0.023, OS, P = 0.005) were the independent prognostic factors in MB patients. Emphatically, the levels of preoperative NLR and PLR in Group 3 MB were significantly higher than those in WNT MB. High preoperative NLR was associated with unfavorable OS in Group 3 (P = 0.032) and Group 4 (P = 0.027) tumors. Similarly, increased preoperative PLR predicted poor PFS (P = 0.012) and OS (P = 0.009) in Group 4 tumors. Preoperative NLR and PLR were the potential prognostic markers for MB patients. Preoperative NLR and PLR were significantly associated with the survival of Group 3 and Group 4 tumors.
Assuntos
Biomarcadores Tumorais/análise , Plaquetas/patologia , Neoplasias Cerebelares/patologia , Linfócitos/patologia , Meduloblastoma/patologia , Cuidados Pré-Operatórios , Adolescente , Adulto , Neoplasias Cerebelares/cirurgia , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Meduloblastoma/cirurgia , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto JovemRESUMO
The prediction of clinical outcome for patients with infiltrative gliomas is challenging. Although preoperative hematological markers have been proposed as predictors of survival in glioma and other cancers, systematic investigations that combine these data with other relevant clinical variables are needed to improve prognostic accuracy and patient outcomes. We investigated the prognostic value of preoperative hematological markers, alone and in combination with molecular pathology, for the survival of 592 patients with Grade II-IV diffuse gliomas. On univariate analysis, increased neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR), and decreased albumin-to-globulin ratio (AGR), all predicted poor prognosis in Grade II/III gliomas. Multivariate analysis incorporating tumor status based on the presence of IDH mutations, TERT promoter mutations, and 1p/19q codeletion showed that in lower-grade gliomas, high NLR predicted poorer survival for the triple-negative, IDH mutation only, TERT mutation only, and IDH and TERT mutation groups. NLR was an independent prognostic factor in Grade IV glioma. We therefore propose a prognostic model for diffuse gliomas based on the presence of IDH and TERT promoter mutations, 1p/19q codeletion, and NLR. This model classifies lower-grade gliomas into nine subgroups that can be combined into four main risk groups based on survival projections.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/patologia , Glioma/sangue , Glioma/patologia , Patologia Molecular , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Fatores de RiscoRESUMO
BACKGROUND: Both LncRNA UCA1 and miR-495 are crucial gene regulators in various disorders. This study aims to investigate their role in epilepsy and seizure-induced brain injury. METHODS: In this research, rat model of epilepsy was established by pilocarpine induction. The RNA and protein expression in hippocampal tissues and neurons were determined by qRT-PCR and western blot, respectively. The hippocampal neurons were isolated from hippocampal tissues, and treated with magnesium-free (MGF) physiological solution for epileptiform activity induction. The endogenous expression of related genes was modulated by recombinant plasmids and cell transfection. Flow cytometry was used to analyze the cell apoptosis. Dual luciferase reporter assay was performed to determine the interaction between miR-495 and Nrf2 in HEK-293 cells. RESULTS: The lncRNA UCA1 and Nrf2 were down-regulated in epileptiform hippocampal tissues and neurons, while the miR-495 was up-regulated. Over-expression of UCA1 inhibited apoptosis of hippocampal neurons by suppressing miR-495. MiR-495 negatively regulated Nrf2. UCA1 inhibited apoptosis of hippocampal neurons through miR-495/Nrf2-ARE pathway. UCA1 suppressed pilocarpine-induced epilepsy in rat. CONCLUSION: LncRNA UCA1 suppressed pilocarpine-induced epilepsy by inhibiting apoptosis of hippocampal neurons through miR-495/Nrf2-ARE pathway, and thereby inhibiting brain injury induced by seizure.