Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 210(5): 640-652, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651806

RESUMO

IκBα is a critical protein that inhibits NF-κB nuclear translocation and impairs NF-κB-mediated signaling. The abundance of IκBα determines the activation and restoration of the inflammatory response. However, posttranslational regulation of IκBα remains to be fully understood. In this study, we identified ubiquitin-specific protease 39 (USP39) as a negative regulator in the NF-κB inflammatory response by stabilizing basal IκBα. The expression of USP39 in macrophages was reduced under LPS-induced inflammation. Knockdown or knockout of USP39 in macrophages significantly increased the expression and secretion of proinflammatory cytokines upon exposure to LPS or Escherichia coli, whereas reexpression of exogenous USP39 in USP39-deficient macrophages rescued the effect. Moreover, USP39-defective mice were more sensitive to LPS or E. coli-induced systemic sepsis. Mechanistically, USP39 interacted with and stabilized IκBα by reducing K48-linked polyubiquination of IκBα. Taken together, to our knowledge, our study for the first time revealed the inhibitory function of USP39 in the NF-κB inflammatory response, providing a previously unknown mechanism for control of inflammatory cytokine induction in the cellular anti-inflammatory response.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , Citocinas/metabolismo , Escherichia coli/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa
2.
Rev Cardiovasc Med ; 25(3): 94, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39076939

RESUMO

Background: PCSK9 MaB (Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitor) may reduce the occurrence of major adverse cardiovascular events (MACEs) in patients diagnosed with acute coronary syndrome (ACS). In this meta-analysis, we conducted a thorough compilation of evidence from established clinical studies to evaluate PCSK9 MaB's capacity to control blood lipid levels and prevent MACEs in ACS patients. Methods: We conducted searches on Pubmed, Embase, the Cochrane Library, and Web of Science to identify relevant articles. Data from ACS patients were extracted using a standardized format for aggregating data. We calculated the risk ratio (RR) for MACE and assessed changes in blood lipid parameters. All statistical analyses were performed using RevMan. Results: 11 articles representing 5 trials were included in our systematic review and meta-analysis. When compared to a placebo, PCSK9 MaB significantly reduced the risk of MACEs ( I 2 = 0%, p = 0.63, RR [95% CI] = 0.88 [0.81, 0.97], p < 0.01) and the recurrence rate of ACS ( I 2 = 45%, p = 0.18, RR [95% CI] = 0.89 [0.83, 0.95], p < 0.01). Additionally, PCSK9 MaB notably reduced low-density lipoprotein cholesterol (LDL-C) levels (SMD [95% CI] = -2.12 [-2.32, -1.92], p < 0.01) and Apolipoprotein B (ApoB) levels (SMD [95% CI] = -1.83 [-2.48, -1.18], p < 0.01). Importantly, there were no significant differences in adverse reactions between the PCSK9 MaB group and the control group. Conclusions: PCSK9 MaB, whether used as a standalone treatment or in combination with other therapies, can effectively inhibit PCSK9. It substantially lowers key blood lipid parameters, including low-density lipoprotein (LDL), ApoB, and triglycerides, all without giving rise to notable safety concerns.

3.
Mol Biol Rep ; 50(2): 1321-1331, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36456771

RESUMO

BACKGROUND: Crocetin is a bioactive ingredient in saffron, derived from the Crocus sativus stigmas of the Iridaceae family. As a chemically carotenoid derivative, crocetin exhibites effects like anti-inflammatory, antioxidant, neuroprotective, etc. However, the protective effect of crocetin on glaucoma and its mechanism remains unclear. The current study assesed the neuroprotective and anti-inflammatory effects of crocetin on retinal neurons in glaucoma rats which were induced by 0.3% carbomer injection into the anterior chamber. METHODS AND RESULTS: The pathological structures on the retina and optic nerve were observed and examined by H&E staining and transmission electron microscopy. Immunohistochemical staining was used to detect the expression of TNF-α, IL-1ß, and IL-6 of the retina and the expression of a brain-derived neurotrophic factor (BDNF) in the primary visual cortex (PVC). Western blot was carried out to detect the expression of PI3K, Akt, and NF-κB in the retina. It was found that crocetin ameliorated the pathological changes of the retina and ON and reduced the number of apoptotic retinal ganglion cells. Immunohistochemical staining showed that crocetin could decrease the contents of TNF-α, IL-1ß, and IL-6 and increase the contents of BDNF. Western blot showed that crocetin was found to suppress the expression of PI3K, Akt, and NF-κB. CONCLUSION: The results obtained in this study have indicated that crocetin showes neuroprotective effects on retinal ganglion cells in glaucoma rats and inhibits retinal dysfunction. Meanwhile, crocetin exerted an anti-inflammatory effect to protect the retina by inhibiting the expression of the PI3K/Akt/NF-κB signaling pathway. This work provides substantial evidence that crocetin may be a potential drug for the treatment of glaucoma.


Assuntos
Glaucoma , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Neuroproteção , Fator de Necrose Tumoral alfa , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Interleucina-6 , Glaucoma/tratamento farmacológico , Anti-Inflamatórios/farmacologia
4.
J Am Chem Soc ; 144(17): 7731-7740, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442665

RESUMO

A 36-mer guanine (G)-rich DNA aptamer (OBA36) is able to distinguish one atomic difference between ochratoxin analogues A (OTA) and B (OTB), showing prominent recognition specificity and affinity among hundreds of aptamers for small molecules. Why OBA36 has >100-fold higher binding affinity to OTA than OTB remains a long-standing question due to the lack of high-resolution structure. Here we report the solution NMR structure of the aptamer-OTA complex. It was found that OTA binding induces the aptamer to fold into a well-defined unique duplex-quadruplex structural scaffold stabilized by Mg2+ and Na+ ions. OTA does not directly interact with the G-quadruplex, but specifically binds at the junction between the double helix and G-quadruplex through π-π stacking, halogen bonding (X-bond), and hydrophobic interaction. OTB has the same binding site as OTA but lacks the X-bond. The strong X-bond formed between the chlorine atom of OTA and the aromatic ring of C5 is the key to discriminating the strong binding toward OTA. The present research contributes to a deeper insight of aptamer molecular recognition, reveals structural basis of the high-affinity binding of aptamers, and provides a foundation for further aptamer engineering and applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quadruplex G , Ocratoxinas , Aptâmeros de Nucleotídeos/química , Ocratoxinas/química
5.
Immunopharmacol Immunotoxicol ; 44(2): 157-167, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34958291

RESUMO

CONTEXT: Few studies on anti-inflammatory drugs with indole groups have been published. This is the first study that demonstrates the anti-inflammatory effects of indole derivative XCR-5a in vitro and in vivo. OBJECTIVE: This study aimed to discover more anti-inflammatory drugs with indole groups and investigate their anti-inflammatory mechanisms. MATERIALS AND METHODS: First, a series of indole derivatives was synthesized, then screened for XCR-5a, a compound with anti-inflammatory effects. Second, the in vitro production of IL-1ß, IL-6, TNF-α, inducible nitric oxide synthase (iNOS), and cyclo-oxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced primary cells of mice pretreated with XCR-5a was determined using qPCR and ELISA. Finally, the effect of XCR-5a on LPS-induced NF-κB signaling activation was determined by Western blotting. An in vivo mouse sepsis model was established. In mouse lung tissue, the production of IL-1ß, IL-6, and TNF-α was determined and H&E staining was performed. RESULTS: Our findings showed that XCR-5a could suppress the production of LPS-induced IL-1ß, IL-6, and TNF-α, as well as mRNA expression of iNOS and COX-2. Pretreatment with XCR-5a inhibited the LPS-induced inflammatory response in septic mice in vivo by decreasing pro-inflammatory cytokines production in serum and reducing immune cell infiltration. Mechanistically, XCR-5a suppressed LPS-induced activation of the NF-κB signaling pathway. CONCLUSIONS: XCR-5a has anti-inflammatory effects in vitro and in vivo. Therefore, XCR-5a could be a potential drug candidate for the treatment of inflammatory diseases.


Assuntos
Inflamação , Lipopolissacarídeos , Animais , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Indóis/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
6.
BMC Genomics ; 22(1): 670, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535080

RESUMO

BACKGROUND: Isatidis Radix, the root of Isatis indigotica Fort. (Chinese woad) can produce a variety of efficacious compound with medicinal properties. The tetraploid I. indigotica plants exhibit superior phenotypic traits, such as greater yield, higher bioactive compounds accumulation and enhanced stress tolerance. In this study, a comparative transcriptomic and metabolomic study on Isatidis Radix autotetraploid and its progenitor was performed. RESULTS: Through the targeted metabolic profiling, 283 metabolites were identified in Isatidis Radix, and 70 polyploidization-altered metabolites were obtained. Moreover, the production of lignans was significantly increased post polyploidization, which implied that polyploidization-modulated changes in lignan biosynthesis. Regarding the transcriptomic shift, 2065 differentially expressed genes (DEGs) were identified as being polyploidy-responsive genes, and the polyploidization-altered DEGs were enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. The further integrative analysis of polyploidy-responsive metabolome and transcriptome showed that 1584 DEGs were highly correlated with the 70 polyploidization-altered metabolites, and the transcriptional factors TFs-lignans network highlighted 10 polyploidy-altered TFs and 17 fluctuated phenylpropanoid pathway compounds. CONCLUSIONS: These results collectively indicated that polyploidization contributed to the high content of active compounds in autotetraploid roots, and the gene-lignan pathway network analysis highlighted polyploidy-responsive key functional genes and regulators.


Assuntos
Isatis , Transcriptoma , Regulação da Expressão Gênica de Plantas , Isatis/genética , Metaboloma , Poliploidia , Metabolismo Secundário/genética
7.
Nucleic Acids Res ; 47(11): 5963-5972, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31062016

RESUMO

SELEX is the cornerstone for aptamer research with broad applications in biosensors and medicine. To improve the affinity of selected aptamers, we propose a structure-guided post-SELEX approach, an optimization method based on the precise secondary structure of the aptamer-ligand complex. We demonstrate this approach using the Ochratoxin A (OTA) aptamer. Guided by the structure, we designed a new aptamer whose affinity is improved by more than 50-fold. We also determined the high-resolution NMR structure of the new aptamer-OTA complex and elucidated the discriminatory recognition mechanism of one atomic difference between two analogs, OTA and OTB. The aptamer forms an unusual hairpin structure containing an intramolecular triple helix, which is not seen in the previously determined aptamer complex. The π-π stacking, the hydrophobic interaction, hydrogen bonds and halogen bonds between OTA and the aptamer contribute to the recognition of OTA, and the halogen bonds play an important role in discriminating between OTA and OTB. Our results demonstrate that the structure-guided post-SELEX approach improves aptamers affinity. An improved OTA biosensor system might be developed using this new strategy.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Ocratoxinas/química , Técnica de Seleção de Aptâmeros , Aspergillus ochraceus/metabolismo , Cloro/química , DNA de Cadeia Simples/química , Halogênios/química , Ligação de Hidrogênio , Ligantes , Limite de Detecção , Espectroscopia de Ressonância Magnética , Conformação Molecular , Penicillium/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína
8.
Chemistry ; 23(28): 6736-6740, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28295725

RESUMO

Macromolecular crowding and confinement are two factors that potentially affect protein structure and function in a complex cellular environment. The confinement effect on the structure and function of holoCaM [Ca2+ -loaded calmodulin (CaM)], a two-domain protein involved in many calcium-mediated signaling pathways, has been investigated previously. However, little is known about how macromolecular crowding affects holoCaM structure and function. Here, the structure-function correlations of holoCaM are investigated in macromolecular crowded environments. It was found that macromolecular crowding impacts its structure and function mildly. The major conformational states are still extended conformation with inter-domain separation in crowded environment as well as those in dilute solution, but the population of transiently compact conformation increases compared to dilute solution. Furthermore, macromolecular crowding facilitates the binding of CaM with AcN19 peptide (CaM-bind domain of α-syn). This study provides a direct comparison for macromolecular crowding and confinement effects on protein structure and function, which helps to understand chemistry regulation in living cells.


Assuntos
Calmodulina/química , Cálcio/química , Cálcio/metabolismo , Calmodulina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Terciária de Proteína , Transdução de Sinais
9.
BMC Med Genomics ; 17(1): 260, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39482662

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an exceptionally contagious single-stranded RNA virus with a strong positive contagion. The COVID-19 pandemic refers to the swift worldwide dissemination of SARS-CoV-2 infection, which began in late 2019. The COVID-19 epidemic has disrupted many cancer treatments. A few reports indicate that the prevalence of SARS-CoV-2 has disrupted the treatment of breast cancer patients (BCs). However, the role of SARS-CoV-2 in the occurrence and prognosis of BC has not been elucidated. Here, we applied bioinformatics to construct a prognostic signature of SARS-CoV-2-related genes (SCRGs). Specifically, weighted gene co-expression network analysis (WGCNA) was utilized to extract co-expressed genes of differentially expressed genes (DEGs) in breast cancer and SCRGs. Then, we utilized the least absolute shrinkage and selection operator (LASSO) algorithm and univariate regression analysis to screen out three hub genes (DCTPP1, CLIP4 and ANO6) and constructed a risk score model. We further analyzed tumor immune invasion, HLA-related genes, immune checkpoint inhibitors (ICIs), and sensitivity to anticancer drugs in different SARS-CoV-2 related risk subgroups. In addition, we have developed a nomination map to expand clinical applicability. The results of our study indicate that BCs with a high-risk score are linked to negative outcomes, lower immune scores, and reduced responsiveness to anticancer medications. This suggests that the SARS-CoV-2 related signature could be used to guide prognosis assessment and treatment decisions for BCs.


Assuntos
Neoplasias da Mama , COVID-19 , SARS-CoV-2 , Humanos , Neoplasias da Mama/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Feminino , Prognóstico , SARS-CoV-2/genética , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética
10.
J Biomed Mater Res A ; 112(5): 721-732, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38093473

RESUMO

Injectable hyaluronic acid (HA) hydrogel plays an important role in dermal filling. However, conventional HA dermal fillers mostly lack bio-functional diversity and frequently cause adverse reactions because of the chemical stiffness of highly modified degree and crosslinker residues. In this study, polylactic acid (PLA) was embedded into HA hydrogel as a bioactive substance and 1,4-butanediol diglycidyl ether was used as a crosslinker to prepare the HA/PLA composite hydrogel with enhanced biocompatibility and biological performance. We aimed to investigate the properties of HA/PLA composite hydrogels as dermal fillers by assessing the rheological properties, surface microstructure, enzymolysis stability, swelling ratio, degradation rate, cytotoxicity, and anti-wrinkle effect on photo-aged skin. The results showed that the stability and stiffness of the composite hydrogel decreased with an increasing amount of PLA, while the in vivo safety of the HA/PLA hydrogel was enhanced, showing no adverse reactions such as edema, redness, or swelling. Moreover, the composite hydrogel with 2 wt% PLA exhibited excellent anti-wrinkle effects, showing the highest collagen production. Thus, the PLA-embedded HA composite hydrogel showed potential as a dermal filler with high safety, easy injectability, and excellent anti-wrinkle effects.


Assuntos
Preenchedores Dérmicos , Preenchedores Dérmicos/farmacologia , Preenchedores Dérmicos/química , Ácido Hialurônico/química , Hidrogéis/farmacologia , Hidrogéis/química , Poliésteres
11.
Front Mol Biosci ; 10: 1165776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304069

RESUMO

Neutrophil extracellular traps (NETs), a network of DNA histone complexes and proteins released by activated neutrophils, have been demonstrated to be associated with inflammation, infection related immune response and tumorigenesis in previous reports. However, the relationship between NETs related genes and breast cancer remains controversial. In the study, we retrieved transcriptome data and clinical information of BRCA patients from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) datasets. The expression matrix of neutrophil extracellular traps (NETs) related genes was generated and consensus clustering was performed by Partitioning Around Medoid (PAM) to classify BRCA patients into two subgroups (NETs high group and NETs low group). Subsequently, we focus on the differentially expressed genes (DEGs) between the two NETs-related subgroups and further explored NETs enrichment related signaling pathways by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, we constructed a risk signature model by LASSO Cox regression analysis to evaluate the association between riskscore and prognosis. Even more, we explored the landscape of the tumor immune microenvironment and the expression of immune checkpoints related genes as well as HLA genes between two NETs subtypes in breast cancer patients. Moreover, we found and validated the correlation of different immune cells with risk score, as well as the response to immunotherapy in different subgroups of patients was detected by Tumor Immune Dysfunction and Exclusion (TIDE) database. Ultimately, a nomogram prognostic prediction model was established to speculate on the prognosis of breast cancer patients. The results suggest that high riskscore is associated with poor immunotherapy response and adverse clinical outcomes in breast cancer patients. In conclusion, we established a NETs-related stratification system that is beneficial for guiding the clinical treatment and predicting prognosis of BRCA.

12.
Eur J Med Res ; 28(1): 511, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964339

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the three deadliest malignant tumors in the world, posing a severe hazard to human health. Nonetheless, the 5-year survival rate for advanced CRC remains unsatisfactory. Grid2 interacting protein (GRID2IP) is a Purkinje fiber postsynaptic scaffold protein implicated in a number of signal transduction pathways in the nervous system. Previous studies have shown that Grid2 is closely related to the occurrence and prognosis of gastric cancer and many other diseases. Therefore, we aim to identify the relationship between GRID2IP and the occurrence and prognosis of CRC. METHODS: Transcriptome data were retrieved from The Cancer Genome Atlas (TCGA) database to analyze the differential expression of GRID2IP in a variety of malignant tumors and then validate it by quantitative real time polymerase chain reaction(Q-PCR) and Western Blot in HT29 and SW480 cells. "DESeq2" package was used to analyze the differentially expressed genes (DEGs) between the high- and low-GRID2IP subgroups. In relation to DEGs, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. In addition, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were employed to examine DEGs-associated signaling pathways and GRID2IP-associated immune cell infiltration levels. Besides, overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) were compared between the two subgroups using a Kaplan-Meier analysis. In addition, a prognostic model for GRID2IP and clinical characteristics was developed using the univariate Cox regression method. The "pRRophetic" package was applied to predict the drug sensitivity of different subgroups. Moreover, we also performed single-cell analysis of GRID2IP using the TISCH database. RESULTS: GRID2IP is upregulated in CRC patients. The rise of GRID2IP inhibits the invasion of tumor-associated immune cells resulting in a lower immune score. In addition, high GRID2IP expression was associated with poor prognosis in different clinical subgroups. Analysis of single cells revealed that GRID2IP was predominantly expressed in immune cells, myofibroblasts, and cancerous cells. In terms of chemotherapy drug sensitivity, the subgroup with high GRID2IP expression was less sensitive to gemcitabine. CONCLUSIONS: Our results suggest that rising GRID2IP promotes tumor-associated immune cell infiltration and suggests adverse outcomes in CRC patients, which may be a useful biomarker for determining the prognosis of CRC and a potential target molecule for CRC therapy.


Assuntos
Neoplasias Colorretais , Neoplasias Gástricas , Humanos , Biomarcadores , Western Blotting , Neoplasias Colorretais/genética , Prognóstico
13.
Eur J Med Res ; 28(1): 571, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057871

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and a nonnegligible health concern on a worldwide scale. Disulfidptosis is a novel mode of cell death, which is mainly caused by the collapse of the actin skeleton. Although many studies have demonstrated that various types of cell death are associated with cancer treatment, the relationship between disulfidptosis and HCC has not been elucidated. METHODS: Here, we mainly applied bioinformatics methods to construct a disulfidptosis related risk model in HCC patients. Specifically, transcriptome data and clinical information were downloaded from the Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) database. A total of 45 co-expressed genes were extracted between the disulfidptosis-related genes (DRGs) and the differential expression genes (DEGs) of liver hepatocellular carcinoma (LIHC) in the TCGA database. The LIHC cohort was divided into two subgroups with different prognosis by k-mean consensus clustering and functional enrichment analysis was performed. Subsequently, three hub genes (CDCA8, SPP2 and RDH16) were screened by Cox regression and LASSO regression analysis. In addition, a risk signature was constructed and the HCC cohort was divided into high risk score and low risk score subgroups to compare the prognosis, clinical features and immune landscape between the two subgroups. Finally, the prognostic model of independent risk factors was constructed and verified. CONCLUSIONS: High DRGs-related risk score in HCC individuals predict poor prognosis and are associated with poor immunotherapy response, which indicates that risk score assessment model can be utilized to guide clinical treatment strategy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Prognóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Imunoterapia
14.
J Ethnopharmacol ; 300: 115719, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126781

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saffron, the dried stigma of Crocus sativus L., has a long history of use in the treatment of depression in traditional Chinese medicine and Islamic medicine. The unique aroma of saffron, primarily derived from its volatile oil, has been widely used by folk to mitigate anxiety and depression via sniffing because the aroma of saffron has a pleasant and invigorating effect. AIM OF THE STUDY: This study aimed to investigate the antidepressant effect and the underlying mechanism of saffron essential oil (SEO) in mice exposed to chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS: In this study, compounds of SEO were identified using gas chromatography-mass spectrometry analysis, while network pharmacology was used to predict potential active compounds, antidepressant targets, and related signaling pathways of SEO. The CUMS depression model was further used to explore the therapeutic effect and possible mechanism of SEO. During the modeling period, mice were regularly administered fluoxetine (3.6 mg/kg, i.g.) or diluted SEO (2%, 4%, and 6% SEO, inhalation). The antidepressant and neuroprotective effects of SEO were evaluated by behavior tests (the open field test, the sucrose preference test, the tail suspension test, and the forced swimming test), hematoxylin-eosin staining, and Nissl staining. The enzyme-linked immunosorbent assay kits were used to measure dopamine (DA), 5-serotonin (5-HT), brain-derived neurotrophic factor (BDNF), and γ-aminobutyric acid (GABA) levels in serum. The relative abundance of Raf1, MEK1, P-ERK1/2/ERK1/2, P-CREB1/CREB1, BDNF, and P-Trk B/Trk B in the hippocampus was determined using western blot (WB). RESULTS: According to the network pharmacology analysis, seven active SEO compounds mediated 113 targets related to depression treatment, most of which were enriched in the 5-HT synapse, calcium signaling pathway, and cAMP signaling pathway. In vivo experiments indicated that fluoxetine and SEO improved depression-like behaviors in depressed mice. The levels of 5-HT, DA, BDNF, and GABA in serum increased significantly. Histopathological examinations revealed that fluoxetine and SEO ameliorated neuronal damage in the hippocampus. WB analysis showed that the relative expressions of Raf1, MEK1, P-ERK1/2/ERK1/2, P-CREB1/CREB1, BDNF, and P-Trk B/Trk B were significantly higher in the fluoxetine and SEO groups than in the CUMS group. CONCLUSION: Overall, these findings suggest that SEO significantly alleviates the depressive symptoms in CUMS exposed mice and partially restores hippocampal neuronal damage. Meanwhile, the best efficacy was observed in 4% SEO. Furthermore, the antidepressant mechanism of SEO is primarily dependent on the regulation of the MAPK-CREB1-BDNF signaling pathway.


Assuntos
Crocus , Fármacos Neuroprotetores , Óleos Voláteis , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Crocus/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Fluoxetina/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Hipocampo , Sistema de Sinalização das MAP Quinases , Camundongos , Fármacos Neuroprotetores/farmacologia , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Serotonina/metabolismo , Transdução de Sinais , Estresse Fisiológico , Estresse Psicológico/tratamento farmacológico , Sacarose/metabolismo , Sacarose/farmacologia , Ácido gama-Aminobutírico/metabolismo
15.
Front Psychol ; 13: 1047831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36755984

RESUMO

Educational revisions facilitate the relief of teacher stress by means of enhancing school organizational conditions. However, limited research has explored the effects of school organizational conditions on teacher stress in China. Using a sample of 734 primary and secondary school teachers from 30 provinces or municipalities of China, this study examined the effects of school organizational conditions on teacher stress in China, with a particular focus on the mediating role of psychological resilience and moderating role of perceived COVID-19 crisis strength. The results demonstrated that school organizational conditions were negatively associated with teacher stress. Furthermore, psychological resilience partially mediated the relation between school organizational conditions and teacher stress. In addition, perceived COVID-19 crisis strength significantly moderated the direct and indirect relations between school organizational conditions and teacher stress. The relations between school organizational conditions and teacher stress and between school organizational conditions and psychological resilience were stronger for teachers who perceived low levels of COVID-19 crisis strength. However, the indirect relation between psychological resilience and stress was stronger for teachers who perceived high levels of COVID-19 crisis strength. Implications have been provided accordingly.

16.
Biomed Pharmacother ; 145: 112468, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34847479

RESUMO

Inflammation is a biological process closely related to different kinds of diseases, such as cancer and metabolic diseases. Therefore, effective control of the occurrence and development of inflammation is of great significance for disease prevention and control. Recently, 2-substituted indoles have gradually become a research hotspot because of their stability and pharmacological activity. Here we synthesized a series of compound containing 2-substituted indoles and investigated XCR-7a's role in inflammatory response. Our data show that XCR-7a can inhibit the production of inflammatory cytokines interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and inflammatory mediator cyclooxygenase-2 (COX-2) induced by lipopolysaccharide (LPS) in mouse peritoneal macrophages. Also, XCR-7a has a protective effect on LPS-induced inflammatory response in mice. Mechanically, we found that XCR-7a could inhibit the phosphorylation of c-Fos induced by LPS, which suggested that the protective effect of XCR-7a on inflammation was related to its negative regulation to phosphorylation of c-Fos. Briefly, our results demonstrated that XCR-7a could be expected to be a potential drug for controlling inflammation.


Assuntos
Imunidade Inata/efeitos dos fármacos , Indóis , Inflamação/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Monitoramento de Medicamentos/métodos , Indóis/síntese química , Indóis/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Fosforilação/efeitos dos fármacos
17.
Front Nutr ; 8: 667130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179058

RESUMO

Background: Polycystic ovary syndrome (PCOS), one of the most common endocrine diseases in women of childbearing age, has been found to be accompanied by changes in the gut microbiota. The Bu Shen Yang Xue formula (BSYXF) is a traditional Chinese medicine widely used for the treatment of PCOS. This study aimed to investigate whether the protective effects of ß-sitosterol, the main active ingredient of BSYXF, on PCOS was mediated by regulating gut microbiota. Methods: The presence of ß-sitosterol in BSYXF was detected by liquid chromatography-mass spectrometry. The PCOS-like mouse model was induced by dehydroepiandrosterone. The fecal supernatant of ß-sitosterol-treated mice was prepared for fecal microbiota transplantation (FMT). Body weight and wet weight of the uterus and ovary of the mice were recorded for organ index calculation. Hematoxylin and eosin stain was used to assess the endometrial morphology and microenvironment changes. Expression of endometrial receptivity markers cyclooxygenase-2 (COX-2), Integrin ανß3, leukemia inhibitory factor (LIF), and homeobox A10 (HOXA10) in the endometrium were determined by immunohistochemistry and western blot analysis. Enzyme-linked immunosorbent assay was employed to detect the expression of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), and testosterone (T) in the serum. The diversity of gut microbiota was examined by 16S rDNA gene sequencing. Results: With the treatment of ß-sitosterol and ß-sitosterol-FMT, the uterine index of PCOS-like mice increased, the ovarian index decreased, levels of COX-2, LH and T decreased, and levels of Integrin ανß3, LIF, HOXA10, FSH, and P increased. Under ß-sitosterol treatment, the structure of the gut microbiota in PCOS-like mice was also changed. Conclusion: ß-sitosterol regulates the endometrial receptivity of PCOS and harmonizes the sex hormone balance, which may be related to the changes in the structure and composition of gut microbiota, thus affecting the pathological process of PCOS.

18.
Mol Med Rep ; 18(5): 4635-4642, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30221732

RESUMO

Non­alcoholic fatty liver disease (NAFLD), which affects approximately one­third of the general population, has become a global health problem. Thus, more effective treatments for NAFLD are urgently required. In the present study, high levels of C­C motif ligand 19 (CCL19), signaling pathways such as Toll­like receptor 4 (TLR4)/nuclear factor­κB (NF­κB), and proinflammatory factors including interleukin­6 (IL­6) and tumor necrosis factor­α (TNF­α) were detected in NAFLD patients, thereby indicating that there may be an association between CCL19 and these factors in NAFLD progression. Using a high­fat diet (HFD), the present study generated a Sprague­Dawley rat model of NAFLD, which displayed dyslipidemia with increased levels of plasma aspartate aminotransferase, alanine aminotransferase, total cholesterol and triglyceride. Dyslipidemia, liver histopathology and gene expression analyses indicated that the NAFLD model was successfully induced by HFD, and metformin and berberine (BBR) were effective treatments for NAFLD. HFD­induced CCL19 levels and associated factors were markedly reduced by the two drug treatments. In addition, metformin or BBR alone significantly promoted adenosine monophosphate­activated protein kinase (AMPK) phosphorylation, which was inhibited by HFD. These results demonstrated that metformin and BBR could improve NAFLD, which may be via the activation of AMPK signaling, and the high expression of CCL19 in NAFLD was significantly reduced by metformin and BBR. It could be inferred that inhibition of CCL19 may be an effective treatment for NAFLD.


Assuntos
Quimiocina CCL19/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética , Quinases Proteína-Quinases Ativadas por AMP , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Berberina/administração & dosagem , Quimiocina CCL19/antagonistas & inibidores , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Dislipidemias/sangue , Dislipidemias/genética , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Metformina/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Quinases , Ratos , Transdução de Sinais , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/genética
19.
Exp Ther Med ; 14(6): 5395-5400, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29285068

RESUMO

There is still no resolution for arterial remodeling related with hypertension, though hypertension treatment has access to a number of pharmacological agents. The present study aimed at investigating the prevention of Cyathula officinalis Kuan's roots (C. officinalis Kuan) against in arterial remodeling in vitro. Spontaneously hypertensive rats (SHRs) were intragastrically administered 3, 6 or 12 g/kg C. officinalis Kuan or normal saline or enalapril (2.5 mg/kg) once a day for 8 weeks. Hematoxylin and eosin were used to measure blood pressure and stain carotid and arota. The serum concentration of nitric oxide (NO) was measured by NO assay kit (nitrate reductase method). The endothelin-1 transcriptional level, endothelial NO synthase of endothelium as well as angiotensin II receptor type 1 (AT1R) of aorta and carotid was tested by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and the protein level in aorta was also measured by western blotting. The blood pressure in SHR+enalapril, SHR+3 g/kg, SHR+6 g/kg and SHR+12 g/kg C. officinalis Kuan groups was significantly decreased at 4, 6 and 8 weeks post-treatment compared with SHR group. Different doses of C. officinalis Kuan and enalapril treatment showed aortic wall thinness and strengthened NO serum level, but made no impact on the transcriptional level of AT1R in aorta or endothelial NO synthase in carotid. It is suggested by such results that therapy by C. officinalis Kuan is able to fight against arterial remodeling, thus may provide a new means to treat arterial remodeling caused by hypertension.

20.
Annu Rev Anal Chem (Palo Alto Calif) ; 10(1): 157-182, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28301750

RESUMO

Investigating the structure, modification, interaction, and function of biomolecules in their native cellular environment leads to physiologically relevant knowledge about their mechanisms, which will benefit drug discovery and design. In recent years, nuclear and electron magnetic resonance (NMR) spectroscopy has emerged as a useful tool for elucidating the structure and function of biomacromolecules, including proteins, nucleic acids, and carbohydrates in living cells at atomic resolution. In this review, we summarize the progress and future of in-cell NMR as it is applied to proteins, nucleic acids, and carbohydrates.


Assuntos
Carboidratos/química , Espectroscopia de Ressonância Magnética/métodos , Ácidos Nucleicos/química , Proteínas/química , Humanos , Ácidos Nucleicos/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Modificação Traducional de Proteínas , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa