RESUMO
Molecular-based multiferroic materials that possess ferroelectric and ferroelastic orders simultaneously have attracted tremendous attention for their potential applications in multiple-state memory devices, molecular switches, and information storage systems. However, it is still a great challenge to effectively construct novel molecular-based multiferroic materials with multifunctionalities. Generally, the structure of these materials possess high symmetry at high temperatures, while processing an obvious order-disorder or displacement-type ferroelastic or ferroelectric phase transition triggered by symmetry breaking during the cooling processes. Therefore, these materials can only function below the Curie temperature (Tc), the low of which is a severe impediment to their practical application. Despite great efforts to elevate Tc, designing single-phase crystalline materials that exhibit multiferroic orders above room temperature remains a challenge. Here, an inverse temperature symmetry-breaking phenomenon was achieved in [FPM][Fe3(µ3-O)(µ-O2CH)8] (FPM stands for 3-(3-formylamino-propyl)-3,4,5,6-tetrahydropyrimidin-1-ium, which acts as the counterions and the rotor component in the network), enabling a ferroelastoelectric phase at a temperature higher than Tc (365 K). Upon heating from room temperature, two-step distinct symmetry breaking with the mm2Fm species leads to the coexistence of ferroelasticity and ferroelectricity in the temperature interval of 365-426 K. In the first step, the FPM cations undergo a conformational flip-induced inverse temperature symmetry breaking; in the second step, a typical ordered-disordered motion-induced symmetry breaking phase transition can be observed, and the abnormal inverse temperature symmetry breaking is unprecedented. Except for the multistep ferroelectric and ferroelastic switching, this complex also exhibits fascinating nonlinear optical switching properties. These discoveries not only signify an important step in designing novel molecular-based multiferroic materials with high working temperatures, but also inspire their multifunctional applications such as multistep switches.
RESUMO
Hybrid metal halide materials with charming phase transition behaviors have attracted considerable attention. In former works, much attention has been focused on the phase transition triggered by the order-disorder or displacement motions of the organic component. However, manipulating the variation of the inorganic component to achieve the phase transition has rarely been reported. Herein, two novel organic-inorganic hybrid materials, [THPM]n[AgX2]n (THPM = 3,4,5,6-tetrahydropyrimidin-1-ium, X = I for 1 and Br for 2) with the [AgX2]nn- anionic chain structure, were synthesized. At 293 K, the [AgX2]nn- chains in 1 were constructed by the tetramer units of Ag atoms, while that in 2 was assembled by the dimer structure. Upon heating to 355 K, owing to the variation of the metallophilic interaction between adjacent Ag atoms, a unique transformation process from tetramer to dimer in [AgI2]nn- chains of 1 can be detected and endow 1 with a giant anisotropic thermal expansion with linear strain of â¼7% and shear strain of â¼20%, which can be used as a mechanical actuator for switching. Alternatively, for 2, no phase transition process can be observed upon the temperature variation. This work provides an effective approach to design phase transition materials triggered by the inorganic part.
RESUMO
The construction of secondary building units (SBUs) in versatile metal-organic frameworks (MOFs) represents a promising method for developing multi-functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high-nuclear transition-metal-based UiO-architecture Co16-MOF-BDC with visible-light-absorbing capacity. Remarkably, the N3 - molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible-light-absorbing chromophores via click reaction. The resulting Bodipy@Co16-MOF-BDC exhibits extremely high performance for oxidative coupling benzylamine (~100 % yield) via both energy and electron transfer processes, which is much superior to that of Co16-MOF-BDC (31.5 %) and Carboxyl @Co16-MOF-BDC (37.5 %). Systematic investigations reveal that the advantages of Bodipy@Co16-MOF-BDC in dual light-absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron-hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high-nuclear transition-metal-based SBUs with surface-modifiable small molecules.
RESUMO
Constructing multiple functional geometric frustration magnets is a hot topic in solid state chemistry and material science. Herein, a two-dimensional (2D) parallel interpenetrating "star" net complex [HDMPDA][Fe6 (µ3 -O)2 (µ-O2 CH)15 ] (1) was obtained successfully with HDMPDA (DMPDA=N, N'-dimethyl-1,3-propanediamine) as charge balancer. The dipole reorientation of the rotator [HDMPDA]+ in the complex brings a structure transition which leads dielectric relaxation close to room temperature. Despite strong antiferromagnetic coupling existing between ions in the net, long-range order temperature TN of the complex is suppressed to 4.2â K by geometric frustration. Interestingly, below TN , a canted antiferromagnetic state, accompanied with slow magnetic relaxation, is detected due to the lack of enough magnetic coupling between 2D layers. Thus, 1 is a particular multifunctional magnetic frustration material containing two different types of relaxations.
RESUMO
In this work, the single crystal to single crystal (SCSC) transformations in three mononuclear copper complexes [CuL22]Cl2·2H2O (1), [CuL12Cl2] (2), and [CuL22]Cl2·4H2O (3) (L1 = di-2-pyridyl ketone, L2 = di(pyridin-2-yl)methanediol) are realized by the irreversible dehydration and hydration reaction of L1 and L2. Dark purple crystal 1 is obtained by self-assembly of L1 and CuCl2·2H2O in solvothermal reactions, in which the carbonyl group of L1 undergoes a hydration addition reaction to form L2. On heating, 1 transforms to 2 by dehydrating water accompanied by the change of the color and coordination octahedron of CuII ions. In a saturated water vapor environment, 2 can absorb six water molecules and transform to 3 with the same color and coordination environment with 1 but different lattice water. The SCSC process from 2 to 3 is reversible: 3 can transform back to 2 on heating like that of 1. Chroma rewritable behaviors in the structural transformation of the complexes make them visually identifiable temperature or water probes.
RESUMO
Under solvothermal conditions, 10 molecular-ionic platinum compounds [Pt(NIA)2]·(L)·nH2O (L = dicarboxylate) were synthesized. In the reaction, acetonitrile undergoes trimerization in situ to generate N-(1-iminoethyl)acetamidine (NIA), which coordinates to PtII ions in forming the N-(1-iminoethyl)acetamidine platinum cation, while the organic carboxylates act as anions. Structural analysis shows that carboxylate ligands regulate the mode of packing of [Pt(NIA)2] in those compounds. Photoluminescence studies show that the photoluminescence behaviors of those compounds also depended on the carboxylate ligands. 1-4, 6, and 7 show blue light emission with fluorescence emission wavelengths of 437-440 nm despite the different carboxylate ligands used. 5 and 8 show green emissions with maximum intensity peak positions of 522 nm. Compared with that of 5 and 8, the emission of 9 and 10 has the same red shifts with peak positions of 567 and 528 nm. The variable-temperature photoluminescence studies reveal that 8 and 10 show two different thermal quenching (TQ) zones in the range of 80-420 K, while the emission intensity of 9 shows negative thermal quenching at low temperatures of 80-220 K and TQ in the range of 220-420 K.
RESUMO
Novel 3D metal formate frameworks {[Ba4Cl][M3(HCO2)13]}n (M = Mn for 1, Co for 2, and Mg for 3) were successfully assembled via microwave-assisted synthesis. The complexes are rare coordination polymers crystallized at space group P4cc with the polar point group C4v. In the structure, the MII ions are bridged by two types of anti-anti formate in forming a 3D pcu framework, and additional formates coordinate to the unsaturated sites of the MII ions in the framework, giving an anionic M-formate net. Ba4Cl clusters take the cavities of the net as charge balance, in which the chloride ion deviates from the center of the barium ions. The asymmetric Ba4Cl structure is transmitted throughout the crystal resulting in polar structure, which is further confirmed by nonlinear optical and piezoelectric test. Nonlinear optical activity tests of 1 and 3 show SHG signals 0.32 and 0.28 times that of KDP, while 2 has a piezoelectric coefficient d33 of 6.8 pC/N along polar axis. Magnetic studies reveal antiferromagnetic coupling between MII ions in 1 and 2. Spin canting was found only in 2 with anisotropic CoII ions, and 2 is a canted antiferromagnetically with TN = 5 K. Further field-induced spin flop was also found in 2 with a critical field 0.9 T.
RESUMO
A series of heterometallic formate framework templated by amines were solvothermally prepared. They feature the formula of [AI][CrMII(HCO2)6] (AI = NH4H2OI and M = Mn for 1, AI = CH3NH3I and M = Fe for 2, AI = CH3NH2CH3I and M = Co for 3, AI = CH3NH3I and M = Ni for 4). The title compounds exhibit isostructural niccolite architectures with differences only in the host metal ions and guest amines. Tunable ferromagnetic (FO) strength was realized in the resulting framework under the guidance of orthogonal magnetic orbital analysis of CrIII (t2g3eg) and MII (t2g3eg2 for MnII, t2g4eg2 for FeII, t2g5eg2 for CoII, t2g6eg2 for NiII) ions. The magnetic ordering temperatures derived from the experimental magnetic measurements for 1-4 are lower than 2, 10.3, 7.6, and 22.0 K, respectively. Notably, thanks to the weak FO coupling between CrIII and MnII ions, compound 1 displays a large magnetocaloric effect bearing the maximum of magnetic entropy change (-Δ Smmax) up to 43.9 J kg-1 K-1 with Δ H = 7 T and T = 3.5 K, larger than most reported transition metal-based complexes and commercial gadolinium gallium garnet (Gd3Ga5O12) (-Δ Smmax = 38.4 J kg-1 K-1 with Δ H = 7 T). From 1, 2/3, to 4, an enhancement of the magnetic ordering temperature is observable due to the increasing strength of FO interactions between CrIII and MII ions. Our work provides a successful instance to modulate the strength of FO exchange via analyzing the orthogonal magnetic orbitals of heterometallic ions.
RESUMO
Introducing another chromophore into a luminescent MOF is a potential way to assembling novel dual-emissive luminescent materials. Putting the chromophore, for which luminescence can be enhanced by Zn2+ ion, into MOF-5 by the "bottle around ship" strategy is a simple but efficient synthesis method to realize such dual-emissive materials. According to this strategy, a novel dual-emissive luminescent composite material [Zn2(HL)3]+@MOF-5 was constructed by loading the [La3(HL)2L2(NO3)3H2O] (1) (H2L = 7,7'-(ethane-1,1'-diyl)8-hydro-quinoline) into MOF-5, in which the [Zn2(HL)3]+ anions were transformed from 1 with the existence of Zn2+. The dual-emissive composite materials show excellent luminescence with two emissions of MOF-5 at 410 nm and [Zn2(HL)3]+ at 524 nm. Furthermore, by combining characteristics of MOF-5 and the guest chromophore, the composite material is highly selectively sensitive toward Al3+ and monoethanolamine, which makes [Zn2(HL)3]+@MOF-5 a potential self-calibrated fluorescence sensor.
RESUMO
A study of the magnetic structure of the [NH2(CH3)2]n[FeIIIMII(HCOO)6]n niccolite-like compounds, with MII = CoII (2) and MnII (3) ions, has been carried out using neutron diffraction and compared with the previously reported FeII-containing compound (1). The inclusion of two different metallic atoms into the niccolite-like structure framework leads to the formation of isostructural compounds with very different magnetic behaviors due to the compensation or not of the different spins involved in each lattice. Below TN, the magnetic order in these compounds varies from ferrimagnetic behavior for 1 and 2 to an antiferromagnetic behavior with a weak spin canting for 3. Structure refinements of 2 and 3 at low temperature (45 K) have been carried out combining synchrotron X-ray and high-resolution neutron diffraction in a multipattern approach. The magnetic structures have been determined from the difference patterns between the neutron data in the paramagnetic and the magnetically ordered regions. These difference patterns have been analyzed using a simulated annealing protocol and symmetry analysis techniques. The obtained magnetic structures have been further rationalized by means of ab initio DFT calculations. The direction of the magnetic moment of each compound has been determined. The easy axis of the MII for compound 1 (FeII) is along the c axis; for compound 2 (CoII), the moments are mainly within the ab plane; finally, for compound 3 (MnII), the calculations show that the moments have components both in the ab plane and along the c axis.
RESUMO
Three new Gd(III) based coordination polymers [Gd2(C2H6SO)(SO4)3(H2O)2]n (1), {[Gd4(HCOO)2(SO4)5(H2O)6]·H2O}n (2), and [Gd(HCOO)(SO4)(H2O)]n (3) were obtained by modifying gadolinium sulfate. With the gradual increase of the volume ratio of HCOOH and DMSO in synthesis, the formate anions begin to coordinate with metal centers; this results in the coordination numbers of sulfate anion increasing and the contents of water and DMSO molecules decreasing in target complexes. Accordingly, spin densities both per mass and per volume were enhanced step by step, which are beneficial for the magneto-caloric effect (MCE). Magnetic studies reveal that with the more formate anions present, the larger the negative value of magnetic entropy change (-ΔSm) is. Complex 3 exhibits the largest -ΔSm = 49.91 J kg(-1) K(-1) (189.51 mJ cm(-3) K(-1)) for T = 2 K and ΔH = 7 T among three new complexes.
RESUMO
It still remains a great challenge to design and construct framework-structured weak ferromagnets with large canting angle which is an effective approach for high performance magnets. According to the strategy of antisymmetric interaction causing spin canting, we report the design of four cobalt compounds, which were tested by X-ray single crystal diffraction, TGA, PXRD, and magnetic measurement. Single-crystal structure analysis reveals that compound 1 has a 2D structure, complex 2 has a 3,4-connected 3D framework, and complex 3 exhibits a 3D net structure with rare 3,5-connected 2-nodal ß-SnF2 topology and the solvent MeOH trapped in the 3D channels as guests. The magnetic property of 3 is spin canting just as designed, with TN about 4.0 K and large canting angle of 14.8°. Highly stable compound 3 sustains its framework in air for more than 12 months, in which the guest MeOH molecules can be replaced by water to form complex 4.
RESUMO
Three new heterometallic formate coordination polymers formulated as [Na2Co(HCOO)4]∞ (1), [NaCo(HCOO)3]∞ (2), and [Na2Co7(HCOO)16]∞ (3) were obtained by adjusting the solvent and ratio of the reactants. In 1, a (4,4) cobalt formate layer is formed and the sodium ions connect the layers to form a three-dimensional (3D) framework. In 2, each formate ligand binds two Co(2+) and two Na(+) ions with a syn,syn,anti,anti coordination mode to form a chrial network with 4,6-connected topology. 3 is a Na(+)-ion-linked 3D framework based on the cobalt formate layer, which has a 10-membered metal ring. Magnetic studies indicate the existence of ferromagnetic interactions between adjacent Co(2+) ions in 1, while dominating antiferromagnetic couplings in 2 and 3.
RESUMO
An unprecedented decanuclear Gd(III) cluster composed of the [Gd10(µ3-OH)8](22+) core has been hydrothermally synthesized. Magnetic analyses indicate that this complex shows weak antiferromagnetic behavior with a relatively large magnetocaloric effect (-ΔS(m)(max) = 31.22 J kg(-1) K(-1)).
Assuntos
Gadolínio/química , Hidróxidos/química , Campos Magnéticos , Modelos Moleculares , TermodinâmicaRESUMO
Two carboxylate-bridged Dy(III) complexes, [Dy(2)(piv)(5)(µ(3)-OH)(H(2)O)](n) (1) and [Dy(2)(piv)(6)(phen)(2)] (2) (pivH = pivalic acid; phen = 1,10-phenanthroline), have been synthesized and structurally characterized. Complex 1 takes a one-dimensional (1D) chain structure based on [Dy(4)(µ(3)-OH)(2)(piv)(8)(H(2)O)(2)](2+) units, while complex 2 is a dinuclear structure bridged by syn,syn-carboxylates. Magnetic investigation indicates weak ferromagnetic interaction between adjacent Dy(III) ions of the Dy(4) unit in 1 and weak intramolecular antiferromagnetic interaction between Dy(III) ions and/or depopulation of the Dy(III) excited-state Stark sublevels in 2. Alternating-current susceptibility measurements revealed frequency- and temperature-dependent out-of-phase signals under a zero direct-current field in 1, with typical slow magnetic relaxation behavior with an anisotropic barrier U ≈ 4.5 K, while 2 exhibits field-induced single-molecule-magnet behavior with ΔE/k(B) = 28.43 K under a 2 kOe external field.
RESUMO
Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.
RESUMO
In the crystal structure of the binuclear title complex, [Co(N(3))(2)(C(12)H(8)N(2))](n), each Co(II) cation is coordinated by two N atoms from one chelating 1,10-phenanthroline ligand and four azide ligands in a slightly distorted octa-hedral coordination. The two Co(II) cations of the binuclear complex are related by an inversion centre and are bridged by two symmetry-related azide ligands in both µ(1,1) and µ(1,3) modes. The µ(1,3) bridging mode gives rise to an infinite one-dimensional chain along the a axis, whereas the µ(1,1) bridging mode is responsible for the formation of the binuclear Co(II) complex.
RESUMO
In this work, we report two supramolecular isomorphic dodecanuclear cobalt complexes, [Co12(mtz)3(L)6(NO3)2(OH)(N3)3]·(OH)3 (1) and [Co12(mtz)3(L)6(NO3)2(OH)(N3)(OAc)]·(OH)4 (2), (Hmtz = 5-methyl-1H-tetrazole, H2L = 7,7'-(ethane-1,1-diyl) diquinolin-8-ol) crystallizing in the PÌ space group with the same unit cell parameters. In 1 and 2, two pirate hat-like hexanuclear Co6(NO3)(L)3 units form the same dodecanuclear metal shell, but the ligands between the hexanuclear units as the core are distinct. The introduction of acetate anions leads to a blue shift of the absorption band in the visible region. Magnetism studies indicate an antiferromagnetic interaction between the CoII ions in the clusters.
Assuntos
Cobalto , Metais , Íons , Ligantes , MagnetismoRESUMO
Defects can greatly promote the catalytic activity of a carbon-based electrocatalyst due to charge redistribution of its electroneutral π-conjugated structure. However, it is still a huge challenge to introduce enough defects into carbon-based materials to improve their catalytic activity. Herein, we report a new method for defect generation by the pyrolysis of the sulfur-nitrogen-containing coordination polymer [Zn(ptt)2]n (ptt = 1-phenyl-1H-tetrazole-5-thiol). A series of controlled experiments clearly demonstrates that the carbothermal reduction reaction of zinc sulfide with carbon at a high temperature plays an important role in creating defects and enhancing the catalytic activity for the oxygen reduction reaction (ORR) of the carbon-based materials. The ZnS/C-1100 with a high content of defects and a small number of ZnS nanoparticles exhibits excellent ORR electrocatalytic performances in alkaline media, in which the half-wave potential (0.894 V vs. RHE), stability, and methanol tolerance are all superior to that of a 20 wt% Pt/C catalyst. Moreover, the ZnS/C-1100 driven ZAB (zinc air battery) exhibits a stable discharge at 10 mA, a peak power density of 134 mW cm-2 and a cathode current density of 265 mA cm-2, which are significantly better than that catalyzed by 20 wt% Pt/C under the same conditions. This research not only develops a new highly active catalyst, but also provides a new method for the preparation of defect-rich carbon materials.
RESUMO
In complex [Na-Dy(µ2-L)4]n(HL = 8-hydroxyquinoline) (1), the DyL4 units were linked by the NaI ions to form one-dimensional chains. The chain exhibited slow magnetic relaxation behavior at low temperature, accompanied by obvious quantum tunneling of magnetization (QTM). Very weak fluorescence was detected in 1 due to the mismatch of the state energy between DyIII and the L ligand. Through the magnetic dilution of diamagnetic YIII ions, complex [NaDy0.02Y0.98(µ2-L)4]n (2) was obtained; in 2 the QTM of DyIII was suppressed and the single ion magnet (SIM) behavior was enhanced. More interestingly, the fluorescence emission of 8-hydroxyquinoline was lightened by the YIII ions in 2, whose intensity is linearly correlated with the temperature variation. The examples of dual functional fluorescent thermometers and SIM materials are attained simply by ion dilution, achieving the effect of killing two birds with one stone.