Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064083

RESUMO

Deep mining of B cell repertoires of HIV-1-infected individuals has resulted in the isolation of dozens of HIV-1 broadly neutralizing antibodies (bNAbs). Yet, it remains uncertain whether any such bNAbs alone are sufficiently broad and potent to deploy therapeutically. Here, we engineered HIV-1 bNAbs for their combination on a single multispecific and avid molecule via direct genetic fusion of their Fab fragments to the human apoferritin light chain. The resulting molecule demonstrated a remarkable median IC50 value of 0.0009 µg/mL and 100% neutralization coverage of a broad HIV-1 pseudovirus panel (118 isolates) at a 4 µg/mL cutoff-a 32-fold enhancement in viral neutralization potency compared to a mixture of the corresponding HIV-1 bNAbs. Importantly, Fc incorporation on the molecule and engineering to modulate Fc receptor binding resulted in IgG-like bioavailability in vivo. This robust plug-and-play antibody design is relevant against indications where multispecificity and avidity are leveraged simultaneously to mediate optimal biological activity.


Assuntos
Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Testes de Neutralização , Engenharia de Proteínas , Anticorpos Neutralizantes/química , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , HIV-1/imunologia , Humanos , Modelos Moleculares , Testes de Neutralização/métodos , Conformação Proteica , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade
2.
Brain Behav Immun ; 120: 290-303, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851307

RESUMO

Postnatal immune activation (PIA) induces persistent glial activation in the brain and causes various neuropathologies in adults. Exercise training improves stress-related mood disorders; however, the role of exercise in psychiatric disorders induced by early-life immune activation and the association between exercise training and glial activation remain unclear. We compared the effects of different exercise intensities on the PIA model, including high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). Both HIIT and MICT in adolescent mice inhibited neuroinflammation, remodeled synaptic plasticity, and improved PIA-induced mood disorders in adulthood. Importantly, HIIT was superior to MICT in terms of reducing inflammation and increasing body weight. RNA-seq of prefrontal cortex (PFC) tissues revealed a gene expression pattern, confirming that HIIT was more effective than MICT in improving brain glial cell activation through epigenetic modifications of KDM6B. We investigated the role of KDM6B, a specific histone lysine demethylation enzyme - histone 3 lysine 27 demethylase, in inhibiting glial activation against PIA-induced depression and anxiety by regulating the expression of IL-4 and brain-derived neurotrophic factor (BDNF). Overall, our data support the idea that HIIT improves PIA-induced mood disorders by regulating KDM6B-mediated epigenetic mechanisms and indicate that HIIT might be superior to MICT in improving mood disorders with PIA in mice. Our findings provide new insights into the treatment of anxiety and depression disorders.

3.
Pulm Pharmacol Ther ; 84: 102286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191068

RESUMO

Pulmonary fibrosis is a progressive and debilitating lung disease characterized by the excessive accumulation of extracellular matrix (ECM) components within the lung parenchyma. However, the underlying mechanism remains largely elusive, and the treatment options available for pulmonary fibrosis are limited. Interleukin 5 receptor, alpha (IL5RA) is a well-established regulator of eosinophil activation, involved in eosinophil-mediated anti-parasitic activities and allergic reactions. Recent studies have indicated additional roles of IL5RA in lung epithelium and fibroblasts. Nevertheless, its involvement in pulmonary fibrosis remains unclear. In present study, we employed single-cell analyses alongside molecular and cellular assays to unveil the expression of IL5RA in lung epithelial cells. Moreover, using both in vitro and in vivo models, we demonstrated a notable upregulation of epithelial IL5RA during the progression of pulmonary fibrosis. This upregulated IL5RA expression subsequently promotes epithelial-mesenchymal transition (EMT), leading to the generation of mesenchymal phenotype with augmented capability for ECM production. Importantly, our findings uncovered that the pro-fibrotic function of IL5RA is mediated by Jak2/STAT3 signaling cascades. Inhibiting IL5RA has the potential to deactivate Jak2/STAT3 and suppress the downstream EMT process and ECM production, thereby offering a promising therapeutic strategy for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Humanos , Transição Epitelial-Mesenquimal/fisiologia , Fibrose , Subunidade alfa de Receptor de Interleucina-5/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Receptores de Interleucina-5/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
Analyst ; 149(2): 418-425, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078792

RESUMO

Carboxylesterase (CES), a main hydrolysis enzyme family in the human body, plays a crucial role in drug metabolism. Among them, CES1 and CES2 are the primary subtypes, and each exhibits distinct distribution and functions. However, convenient and non-invasive methods for distinguishing them and the real-time monitoring of CES2 are relatively rare, hindering the further understanding of physiological functions and underlying mechanisms. In this study, we have designed, synthesized, and evaluated the first selective bioluminescent probe (CBP 1) for CES2 with high sensitivity, high specificity and rapid reactivity. This probe offers a promising approach for the real-time detection of CES2 and its dynamic fluctuations both in vitro and in vivo.


Assuntos
Hidrolases de Éster Carboxílico , Humanos , Hidrolases de Éster Carboxílico/metabolismo
5.
Clin Lab ; 70(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345985

RESUMO

BACKGROUND: Seoul virus (SEOV) is a significant causative pathogen of hemorrhagic fever with renal syndrome (HFRS). Accurate discrimination of SEOV infection from other viral or bacterial infections holds vital clinical importance. METHODS: Our study utilized quantitative real-time PCR (qRT-PCR), metagenomic next-generation sequencing (mNGS), and immunological assays to identify the pathogen causing HFRS. RESULTS: For the case, mNGS identified SEOV and suspected host or environmental microorganisms at 5 days from symptom onset. qRT-PCR detected SEOV between 5 to 8 days from symptom onset. Anti-hantavirus IgM antibodies reached positive criteria at 7 days and IgG antibodies at 9 days from symptom onset. CONCLUSIONS: qRT-PCR, mNGS, and immunological assays each have merits and drawbacks. Optimal selection depends on laboratory conditions and clinical requirements.


Assuntos
Febre Hemorrágica com Síndrome Renal , Vírus Seoul , Humanos , Vírus Seoul/genética , Febre Hemorrágica com Síndrome Renal/diagnóstico , Anticorpos Antivirais , Imunoglobulina G
6.
Ecotoxicol Environ Saf ; 280: 116559, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865937

RESUMO

2-Ethylhexyl diphenyl phosphate (EHDPP) is a representative organophosphorus flame retardant (OPFR) that has garnered attention due to its widespread use and potential adverse effects. EHDPP exhibits cytotoxicity, genotoxicity, developmental toxicity, and endocrine disruption. However, the toxicity of EHDPP in mammalian oocytes and the underlying mechanisms remain poorly understood. Melatonin is a natural free radical scavenger that has demonstrated cytoprotective properties. In this study, we investigated the effect of EHDPP on mouse oocytes in vitro culture system and evaluated the rescue effect of melatonin on oocytes exposed to EHDPP. Our results indicated that EHDPP disrupted oocyte maturation, resulting in the majority of oocytes arrested at the metaphase I (MI) stage, accompanied by cytoskeletal damage and elevated levels of reactive oxygen species (ROS). Nevertheless, melatonin supplementation partially rescued EHDPP-induced mouse oocyte maturation impairment. Results of single-cell RNA sequencing (scRNA-seq) analysis elucidated potential mechanisms underlying these protective effects. According to the results of scRNA-seq, we conducted further tests and found that EHDPP primarily disrupts mitochondrial distribution and function, kinetochore-microtubule (K-MT) attachment, DNA damage, apoptosis, and histone modification, which were rescued upon the supplementation of melatonin. This study reveals the mechanisms of EHDPP on female reproduction and indicates the efficacy of melatonin as a therapeutic intervention for EHDPP-induced defects in mouse oocytes.


Assuntos
Retardadores de Chama , Melatonina , Mitocôndrias , Oócitos , Animais , Melatonina/farmacologia , Camundongos , Oócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Feminino , Retardadores de Chama/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Organofosfatos/toxicidade , Dano ao DNA/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Compostos Organofosforados/toxicidade
7.
Ecotoxicol Environ Saf ; 275: 116264, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564869

RESUMO

Triocresyl phosphate (TOCP) was commonly used as flame retardant, plasticizer, lubricant, and jet fuel additive. Studies have shown adverse effects of TOCP on the reproductive system. However, the potential harm brought by TOCP, especially to mammalian female reproductive cells, remains a mystery. In this study, we employed an in vitro model for the first time to investigate the effects of TOCP on the maturation process of mouse oocytes. TOCP exposure hampered the meiotic division process, as evidenced by a reduction in the extrusion of the first polar body from oocytes. Subsequent research revealed the disruption of the oocyte cell cytoskeleton induced by TOCP, resulting in abnormalities in spindle organization, chromosome alignment, and actin filament distribution. This disturbance further extended to the rearrangement of organelles within oocytes, particularly affecting the mitochondria. Importantly, after TOCP treatment, mitochondrial function in oocytes was impaired, leading to oxidative stress, DNA damage, cell apoptosis, and subsequent changes of epigenetic modifications. Supplementation with nicotinamide mononucleotide (NMN) alleviated the harmful effects of TOCP. NMN exerted its mitigating effects through two fundamental mechanisms. On one hand, NMN conferred stability to the cell cytoskeleton, thereby supporting nuclear maturation. On the other hand, NMN enhanced mitochondrial function within oocytes, reducing the excess reactive oxygen species (ROS), restoring meiotic division abnormalities caused by TOCP, preventing oocyte DNA damage, and suppressing epigenetic changes. These findings not only enhance our understanding of the molecular basis of TOCP induced oocyte damage but also offer a promising avenue for the potential application of NMN in optimizing reproductive treatment strategies.


Assuntos
Mononucleotídeo de Nicotinamida , Fosfatos , Tritolil Fosfatos , Feminino , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Fosfatos/metabolismo , Oócitos , Citoesqueleto , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Mamíferos
8.
J Asian Nat Prod Res ; : 1-30, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920368

RESUMO

Modifications at different positions on the aloperine molecule were performed to improve its anticancer activity and develop anticancer drugs. The in vitro anticancer activities of 44 synthesized compounds were evaluated. The effect of modification positions on anticancer activity was discussed and a structure-activity relationship analysis was established. A novel series of compounds with modifications at the N12 position showed much higher cytotoxicity than aloperine. Among them, compound 22 displayed promising in vitro anticancer activity against PC9 cells with a median inhibitory concentration (IC50) of 1.43 µM. The mechanism studies indicated that compound 22 induced cell apoptosis and cell cycle arrest in PC9 cells. These results demonstrate the potential of aloperine thiourea derivatives in anticancer activity.

9.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542915

RESUMO

Psoriasis is a common chronic inflammatory disease, but most of its current treatments come with a high risk of side effects. As one of the world's top three beverages, tea has a traditional history of being used as a treatment for skin conditions due to its high safety profile, anti-inflammatory and other properties. In this study, we investigated the anti-psoriasis effects of ethanol extracts of black tea, green tea and white tea from southeastern China. The compositions of the tea extracts (TEs) were first determined by UPLC-Q-Exactive-Orbitrap MS and then genetic analysis, antibacterial, anti-inflammatory, and immunocompetence assays were performed. Imiquimod was used to establish a mouse model of psoriasis-like dermatitis and treating with the extracts to examine their efficacy. A total of 88 chemical components, mainly phenols and organic acids, were identified from the TEs. These TEs ameliorated skin damage and they all reduced the expression of cytokines IL-17 and TNF-α. By analyzing the genes, TEs may affect the inflammatory signaling pathway by regulating the metabolic changes. In addition, TEs can significantly scavenge ROS, NO, and inhibit cellular inflammation. In conclusion, this study examined the inhibitory effects of three TEs on psoriasis and their potential as nutritional supplements for the treatment of skin inflammation.


Assuntos
Psoríase , Animais , Camundongos , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Imiquimode/efeitos adversos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Chá , Modelos Animais de Doenças , Pele
10.
Environ Monit Assess ; 196(7): 596, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839676

RESUMO

The issue of soil acidification in tea plantations has become a critical concern due to its potential impact on tea quality and plant health. Understanding the factors contributing to soil acidification is essential for implementing effective soil management strategies in tea-growing regions. In this study, a field study was conducted to investigate the effects of tea plantations on soil acidification and the associated acid-base buffering capacity (pHBC). We assessed acidification, pHBC, nutrient concentrations, and cation contents in the top 0-20 cm layer of soil across forty tea gardens of varying stand ages (0-5, 5-10, 10-20, and 20-40 years old) in Anji County, Zhejiang Province, China. The results revealed evident soil acidification due to tea plantation activities, with the lowest soil pH observed in tea gardens aged 10-20 and 20-40 years. Higher levels of soil organic matter (SOM), total nitrogen (TN), Olsen phosphorus (Olsen-P), available iron (Fe), and exchangeable hydrogen (H+) were notably recorded in 10-20 and 20-40 years old tea garden soils, suggesting an increased risk of soil acidification with prolonged tea cultivation. Furthermore, prolonged tea cultivation correlated with increased pHBC, which amplified with tea stand ages. The investigation of the relationship between soil pHBC and various parameters highlighted significant influences from soil pH, SOM, cation exchange capacity, TN, available potassium, Olsen-P, exchangeable acids (including H+ and aluminum), available Fe, and available zinc. Consequently, these findings underscore a substantial risk of soil acidification in tea gardens within the monitored region, with SOM and TN content being key driving factors influencing pHBC.


Assuntos
Camellia sinensis , Monitoramento Ambiental , Nitrogênio , Solo , Solo/química , Camellia sinensis/química , Nitrogênio/análise , China , Concentração de Íons de Hidrogênio , Ecossistema , Fósforo/análise , Chá/química , Agricultura
11.
BMC Biotechnol ; 23(1): 43, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789318

RESUMO

BACKGROUND: The major safety concern of the clinical application of wild type FGF19 (FGF19WT) emerges given that its extended treatment causes hepatocellular carcinoma. Therefore, we previously generated a safer FGF19 variant - FGF19ΔKLB, which have same effects on glycemic control and bile acid production but much less mitogenic activity. However, it remains unclear as to whether FGF19ΔKLB ameliorates intrahepatic cholestasis. RESULTS: We found that, similar to that of FGF19WT, the chronic administration of FGF19ΔKLB protects mice from cholestatic liver injury in these two models. The therapeutic benefits of FGF19ΔKLB on cholestatic liver damage are attributable, according to the following mechanistic investigation, to the reduction of BA production, liver inflammation, and fibrosis. More importantly, FGF19ΔKLB did not induce any tumorigenesis effects during its prolonged treatment. CONCLUSIONS: Together, our findings raise hope that FGF19ΔKLB may represent a useful therapeutic strategy for the treatment of intrahepatic cholestasis.


Assuntos
Colestase Intra-Hepática , Colestase , Animais , Camundongos , Ácidos e Sais Biliares , Colestase/tratamento farmacológico , Colestase/patologia , Colestase Intra-Hepática/tratamento farmacológico , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/patologia , Modelos Animais de Doenças , Fígado
12.
J Transl Med ; 21(1): 125, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793108

RESUMO

BACKGROUND: Histone deacetylases (HDAC) contribute to oncogenic program, pointing to their inhibitors as a potential strategy against cancers. We, thus, studied the mechanism of HDAC inhibitor ITF2357 in resistance of mutant (mut)-KRAS non-small cell lung cancer (NSCLC) to pemetrexed (Pem). METHODS: We first determined the expression of NSCLC tumorigenesis-related HDAC2 and Rad51 in NSCLC tissues and cells. Next, we illustrated the effect of ITF2357 on the Pem resistance in wild type-KARS NSCLC cell line H1299, mut-KARS NSCLC cell line A549 and Pem-resistant mut-KARS cell line A549R in vitro and in xenografts of nude mice in vivo. RESULTS: Expression of HDAC2 and Rad51 was upregulated in NSCLC tissues and cells. Accordingly, it was revealed that ITF2357 downregulated HDAC2 expression to diminish the resistance of H1299, A549 and A549R cells to Pem. HDAC2 bound to miR-130a-3p to upregulate its target gene Rad51. The in vitro findings were reproduced in vivo, where ITF2357 inhibited the HDAC2/miR-130a-3p/Rad51 axis to reduce the resistance of mut-KRAS NSCLC to Pem. CONCLUSION: Taken together, HDAC inhibitor ITF2357 restores miR-130a-3p expression by inhibiting HDAC2, thereby repressing Rad51 and ultimately diminishing resistance of mut-KRAS NSCLC to Pem. Our findings suggested HDAC inhibitor ITF2357 as a promising adjuvant strategy to enhance the sensitivity of mut-KRAS NSCLC to Pem.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/farmacologia
13.
Mol Pharm ; 20(5): 2612-2623, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042832

RESUMO

Chemotherapy is the main treatment method for osteosarcoma in the clinic. However, drug resistance and its poor antimetastatic effects greatly limit its clinical application. In this work, dual-drug nanoparticles (NPs) containing albendazole (ABZ) and doxorubicin (DOX), named AD@PLGA-PEG NPs, were prepared to solve the problems of chemotherapeutic drug resistance and poor antimetastasis effects. Compared with free DOX, ABZ combined with DOX can increase intracellular reactive oxygen species (ROS) and induce more tumor cell apoptosis; therefore, AD@PLGA-PEG NPs produced more mitochondria-mediated oxidative stress and better apoptosis efficiency. Importantly, ABZ can also effectively inhibit the expression of hypoxia inducible factor-1α (HIF-1α) and then reduce the expression of its downstream vascular endothelial growth factor (VEGF); thus, the AD@PLGA-PEG NPs effectively inhibited tumor metastasis in vivo. Collectively, the dual-drug AD@PLGA-PEG NPs delivery system provided prominent antitumor and antimetastatic efficacy and might be a promising treatment for osteosarcoma.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Osteossarcoma/tratamento farmacológico , Hipóxia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral
14.
Am J Obstet Gynecol ; 229(5): 538.e1-538.e9, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37516400

RESUMO

BACKGROUND: Colposcopy is a cornerstone of cervical cancer prevention; however, there is a global shortage of colposcopists. It is challenging to train a sufficient number of colposcopists through in-person methods, which hinders our ability to adequately diagnose and manage positive cases. A digital platform is needed to make colposcopy training more efficient, scalable, and sustainable; however, current online training programs are generally based on didactic curricula that do not incorporate image analysis training. In addition, long-term assessments of online training are not readily available. Therefore, innovative digital training and an assessment of its effectiveness are needed. OBJECTIVE: This study aimed to evaluate the short- and long-term effects of DECO (an online Digital Education Tool for Colposcopy) on trainees' colposcopy competencies and confidence. STUDY DESIGN: DECO can be used both on laptops and smartphones and comprises 4 training modules (image interpretation; terminology learning; video teaching; and collection of guidelines and typical cases) and 2 test modules. DECO was tested through a pre-post study between September and November 2022. Participants were recruited in China, and DECO training lasted 12 days. Trainees initially learned basic theory before completing training using 200 image-based cases. Pretest, posttest, and follow-up testing included 20 distinct image-based questions, and was conducted on Days 0, 13, and 60. Primary outcomes were competence and confidence scores. Secondary measures were response distributions for colposcopic diagnoses, biopsies, and DECO training satisfaction. Multilevel modeling was used to determine improvement from baseline to posttraining and follow-up for the outcomes of interest. RESULTS: Among 402 participants recruited, 96.8% (n=389) completed pretesting, 84.1% (n=338) posttesting, and 75.1% (n=302) follow-up testing. Colposcopic competence and confidence increased across this study. Diagnostic scores improved on average from 55.3 (53.7-56.9) to 70.4 (68.9-71.9). The diagnostic accuracy for normal/benign lesions, low-grade squamous intraepithelial lesions, and high-grade squamous intraepithelial lesions or worse increased by 16.9%, 13.1%, and 16.9%, respectively. Mean confidence scores increased from 48.1 (45.6-50.6) to 56.2 (54.5-57.9). These improvements remained evident 2 months after training. Trainees were also satisfied with DECO overall. Most found DECO to be scientific (82.5%), easy to use (75.2%), and clinically useful (98.4%), and would recommend it to colleagues (93.2%). CONCLUSION: DECO is a useful, acceptable digital education tool that improves colposcopy competencies and confidence. DECO could make colposcopy training more efficient, scalable, and sustainable because there are no geographic or time limitations. Therefore, DECO could be used to alleviate the shortage of trained colposcopists around the world.


Assuntos
Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Gravidez , Humanos , Colposcopia/métodos , Neoplasias do Colo do Útero/patologia , Biópsia , Fatores de Tempo , Currículo , Displasia do Colo do Útero/patologia
15.
BMC Gastroenterol ; 23(1): 337, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770845

RESUMO

BACKGROUND: Mucosal healing has become the primary treatment target for patients with Crohn's disease (CD). We aimed to develop a noninvasive and convenient tool to evaluate the endoscopic activity in patients with ileocolic CD. METHODS: A retrospective multicenter study including 300 CD patients (training, 210 patients; test, 90 patients) was conducted at two tertiary referral centers. Independent risk factors associated with endoscopic activity were explored, which were then combined into a comprehensive index. The predictive performance was evaluated with the area under receiver operating characteristic curve (ROC). Cohen's Kappa was adopted to examine the consistency between each indicator and endoscopic activity. RESULTS: A total of 210 CD patients were recruited in the training cohort. We found that Crohn's Disease Activity Index (CDAI), C-reactive protein (CRP) and platelet-to-lymphocyte percentage ratio (PLpR) were independently associated with endoscopic activity. Additionally, the comprehensive index generated from the above three indices achieved good discrimination and performed better than CDAI in AUC (0.849 vs. 0.769, P < 0.05). This was further well demonstrated by the external test cohort, which showed good discrimination (AUC: 0.84, 95% CI: 0.744-0.936). Intra-individual comparison revealed the comprehensive index to be superior in the prediction of endoscopic activity. In the subgroup analysis, the AUC of comprehensive index was significantly higher than CDAI especially in inflammatory phenotype (0.824 vs. 0.751, P < 0.05). CONCLUSION: Combining CDAI, CRP and PLpR significantly improved the accuracy for predicting endoscopic activity in ileocolic CD, which can help better monitor an endoscopic flare.


Assuntos
Doença de Crohn , Humanos , Proteína C-Reativa/metabolismo , Colonoscopia , Curva ROC , Estudos Retrospectivos , Índice de Gravidade de Doença
16.
Mol Breed ; 43(2): 7, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37313127

RESUMO

Necrosis caused by soybean mosaic virus (SMV) has not been specifically distinguished from susceptible symptoms. The molecular mechanism for the occurrence of necrosis is largely overlooked in soybean genetic research. Field evaluation reveals that SMV disease seriously influences soybean production as indicated by decreasing 22.4% ~ 77.0% and 8.8% ~ 17.0% of yield and quality production, respectively. To expand molecular mechanism behind necrotic reactions, transcriptomic data obtained from the asymptomatic, mosaic, and necrotic pools were assessed. Compared between asymptomatic and mosaic plants, 1689 and 1752 up- and down-regulated differentially expressed genes (DEGs) were specifically found in necrotic plants. Interestingly, the top five enriched pathways with up-regulated DEGs were highly related to the process of the stress response, whereas the top three enriched pathways with down-regulated DEGs were highly related to the process of photosynthesis, demonstrating that defense systems are extensively activated, while the photosynthesis systems were severely destroyed. Further, results of the phylogenetic tree based on gene expression pattern and an amino acid sequence and validation experiments discovered three PR1 genes, Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700, which were especially expressed in necrotic leaves. Meanwhile, exogenous salicylic acid (SA) but not methyl jasmonate (MeJA) could induce the three PR1 gene expressions on healthy leaves. Contrastingly, exogenous SA obviously decreased the expression level of Glyma.15G062400, Glyma.15G062500, and concentration of SMV, but increased Glyma.15G062700 expression in necrotic leaves. These results showed that GmPR1 is associated with the development of SMV-induced necrotic symptoms in soybean. Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700 is up-regulated in necrotic leaves at the transcriptional levels, which will greatly facilitate a better understanding of the mechanism behind necrosis caused by SMV disease. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-022-01351-3.

17.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982682

RESUMO

Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.


Assuntos
Inativação Gênica , Vírus de Plantas , Melhoramento Vegetal , Epigênese Genética , Interferência de RNA , Plantas/genética , Vetores Genéticos , RNA , Vírus de Plantas/genética , Regulação da Expressão Gênica de Plantas
18.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005254

RESUMO

To enhance the understanding of enzymatic hydrolysis and to accelerate the discovery of key bioactive peptides within enzymatic products, this research focused on elastin as the substrate and investigated the variations in peptide profiles and the production of key bioactive peptides (those exceeding 5% of the total) and their impacts on the biological activity of the hydrolysates. Through the application of advanced analytical techniques, such as stop-flow two-dimensional liquid chromatography and ultra-high-performance liquid chromatography-tandem mass spectrometry, the research tracks the release and profiles of peptides within elastin hydrolysates (EHs). Despite uniform peptide compositions, significant disparities in peptide concentrations were detected across the hydrolysates, hinting at varying levels of bioactive efficacy. A comprehensive identification process pinpointed 403 peptides within the EHs, with 18 peptides surpassing 5% in theoretical maximum content, signaling their crucial role in the hydrolysate's bioactivity. Of particular interest, certain peptides containing sequences of alanine, valine, and glycine were released in higher quantities, suggesting Alcalase® 2.4L's preference for these residues. The analysis not only confirms the peptides' dose-responsive elastase inhibitory potential but also underscores the nuanced interplay between peptide content, biological function, and their collective synergy. The study sets the stage for future research aimed at refining enzymatic treatments to fully exploit the bioactive properties of elastin.


Assuntos
Elastina , Peptídeos , Animais , Bovinos , Hidrólise , Mapeamento de Peptídeos , Elastina/química , Peptídeos/química , Elastase Pancreática , Hidrolisados de Proteína
19.
Yi Chuan ; 45(7): 617-623, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503585

RESUMO

Infantile neuroaxonal dystrophy (INAD) is a rare autosomal recessive neurodegenerative disease characterized by early hypotonia, and rapid progression to psychomotor development regression, pyramidal tract positivity, and spastic quadriplegia. In this report, we describe a Chinese patient with INAD who presented with hypotonia, delayed motor and language development, and subsequently improved with rehabilitation training. Genetic testing revealed that the patient had compound heterozygous PLA2G6 gene variants, with the heterozygous c.496dupG (p.Glu166fsTer32) variant inherited from her father and the heterozygous c.2189T>G (p.Met730Arg) variant inherited from her mother. The p.Met730Arg was a novel variant. The protein structure predicts that the structural stability of the mutant protein may change, and the in vivo experimental results show that the expression of the mutant protein decrease. This study enriches the PLA2G6 gene mutation spectrum, and improves the clinicians' diagnostic awareness of INAD.


Assuntos
Distrofias Neuroaxonais , Doenças Neurodegenerativas , Humanos , Criança , Feminino , Doenças Neurodegenerativas/genética , Hipotonia Muscular/genética , Testes Genéticos , Mutação , Distrofias Neuroaxonais/genética
20.
BMC Plant Biol ; 22(1): 611, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566190

RESUMO

BACKGROUND: Betulaceae is a relatively small but morphologically diverse family, with many species having important economic and ecological values. Although plastome structure of Betulaceae has been reported sporadically, a comprehensive exploration for plastome evolution is still lacking. Besides, previous phylogenies had been constructed based on limited gene fragments, generating unrobust phylogenetic framework and hindering further studies on divergence ages, biogeography and character evolution. Here, 109 plastomes (sixteen newly assembled and 93 previously published) were subject to comparative genomic and phylogenomic analyses to reconstruct a robust phylogeny and trace the diversification history of Betulaceae. RESULTS: All Betulaceae plastomes were highly conserved in genome size, gene order, and structure, although specific variations such as gene loss and IR boundary shifts were revealed. Ten divergent hotspots, including five coding regions (Pi > 0.02) and five noncoding regions (Pi > 0.035), were identified as candidate DNA barcodes for phylogenetic analysis and species delimitation. Phylogenomic analyses yielded high-resolution topology that supported reciprocal monophyly between Betula and Alnus within Betuloideae, and successive divergence of Corylus, Ostryopsis, and Carpinus-Ostrya within Coryloideae. Incomplete lineage sorting and hybridization may be responsible for the mutual paraphyly between Ostrya and Carpinus. Betulaceae ancestors originated from East Asia during the upper Cretaceous; dispersals and subsequent vicariance accompanied by historical environment changes contributed to its diversification and intercontinental disjunction. Ancestral state reconstruction indicated the acquisition of many taxonomic characters was actually the results of parallel or reversal evolution. CONCLUSIONS: Our research represents the most comprehensive taxon-sampled and plastome-level phylogenetic inference for Betulaceae to date. The results clearly document global patterns of plastome structural evolution, and established a well-supported phylogeny of Betulaceae. The robust phylogenetic framework not only provides new insights into the intergeneric relationships, but also contributes to a perspective on the diversification history and evolution of the family.


Assuntos
Corylus , Fagales , Filogenia , Betulaceae , Betula , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa