Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Microb Pathog ; 192: 106707, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777241

RESUMO

Bacterial wilt of tomato caused by Ralstonia solanacearum is a critical soilborne disease that drastically reduces yield. In the current study, an endophytic strain NEAU-CP5 with strong antagonistic activity against R. solanacearum was isolated from tomato seeds and characterized. The strain was identified as Bacillus velezensis based on 16S rRNA gene and whole genome sequence analysis. NEAU-CP5 can secrete amylase, protease, and cellulase, and also produce known antibacterial metabolites, including cyclo (leucylprolyl), cyclo (phenylalanyl-prolyl), cyclo (Pro-Gly), 3-benzyl-2,5-piperazinedione, pentadecanoic acid, eicosane, 2-methyoic acid, isovaleric acid, dibuty phthalate, and esters of fatty acids (HFDU), which may be responsible for its strong antibacterial activity. Fourteen gene clusters associated with antibacterial properties were also identified in the whole genome sequence of NEAU-CP5. Pot experiment demonstrated that the application of 108 CFU/mL NEAU-CP5 on tomato plants significantly reduced the incidence of tomato bacterial wilt by 68.36 ± 1.67 %. NEAU-CP5 also increased the activity of defense-related enzymes (CAT, POD, PPO, SOD, and PAL) in tomato plants. This is the first report of an effective control of bacterial wilt on tomato plants by B. velezensis and highlights the potential of NEAU-CP5 as a potential biocontrol agent for the management of tomato bacterial wilt.


Assuntos
Bacillus , Filogenia , Doenças das Plantas , RNA Ribossômico 16S , Ralstonia solanacearum , Sementes , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/metabolismo , Bacillus/classificação , Sementes/microbiologia , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Genoma Bacteriano , Sequenciamento Completo do Genoma , Antibiose , Família Multigênica , Amilases/metabolismo , Amilases/genética , DNA Bacteriano/genética
2.
Environ Toxicol ; 39(2): 952-964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975621

RESUMO

Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.


Assuntos
Dietilexilftalato , Melatonina , Masculino , Camundongos , Animais , Testículo , Melatonina/farmacologia , Dietilexilftalato/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo , Apoptose
3.
Artigo em Inglês | MEDLINE | ID: mdl-35679150

RESUMO

A Gram-positive, cellulose-degrading actinobacterium, designed strain NEAU-YM18T, was isolated from rhizosphere soil of wheat (Triticum aestivum L.) sampled in Langfang, Hebei Province, PR China. The novel strain was characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics confirmed that strain NEAU-YM18T belonged to the genus Catellatospora. Cells of strain NEAU-YM18T were observed to contain meso- and 3-hydroxy-diaminopimelic acids as diagnostic cell-wall amino acids. The acyl type of the cell-wall muramic acid was glycolyl. The whole-cell hydrolysates were xylose, glucose and ribose. The phospholipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C15 : 0, iso-C16 : 0, C18 : 1 ω9c and summed feature 5 (anteiso-C18 : 0/C18 : 2 ω6,9c). The menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The DNA G+C content was 71.1 %. The results of 16S rRNA gene sequence and phylogenetic analyses indicated that strain NEAU-YM18T was closely related to Catellatospora chokoriensis 2-25(1)T (98.4 % 16S rRNA gene sequence similarity), Catellatospora vulcania NEAU-JM1T (98.3%) and Catellatospora sichuanensis H14505T (98.3 %) and formed a branch with C. sichuanensis H14505T. Furthermore, the whole genome phylogeny of strain NEAU-YM18T showed that the strain formed an independent clade. The digital DNA-DNA hybridization results between NEAU-YM18T and C. chokoriensis 2-25(1)T, C. vulcania NEAU-JM1T and C. sichuanensis H14505T were 25.0, 24.7 and 24.7 %, respectively, and the whole-genome average nucleotide identity values between them were 81.5, 81.4 and 81.4 %, respectively. These genetic results and some phenotypic characteristics could distinguish strain NEAU-YM18T from its reference strains. In addition, genomic analysis confirmed that strain NEAU-YM18T had the potential to decompose cellulose and produce bioactive compounds. Therefore, strain NEAU-YM18T represents a novel species of the genus Catellatospora, for which the name Catellatospora tritici sp. nov. is proposed. The type strain is NEAU-YM18T (=CCTCC AA 2020040T=JCM 33977T).


Assuntos
Actinobacteria , Celulase , Técnicas de Tipagem Bacteriana , Composição de Bases , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Triticum/microbiologia
4.
Nat Chem Biol ; 15(1): 34-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510190

RESUMO

Bacterial biofilms can be programmed to produce living materials with self-healing and evolvable functionalities. However, the wider use of artificial biofilms has been hindered by limitations on processability and functional protein secretion capacity. We describe a highly flexible and tunable living functional materials platform based on the TasA amyloid machinery of the bacterium Bacillus subtilis. We demonstrate that genetically programmable TasA fusion proteins harboring diverse functional proteins or domains can be secreted and can assemble into diverse extracellular nano-architectures with tunable physicochemical properties. Our engineered biofilms have the viscoelastic behaviors of hydrogels and can be precisely fabricated into microstructures having a diversity of three-dimensional (3D) shapes using 3D printing and microencapsulation techniques. Notably, these long-lasting and environmentally responsive fabricated living materials remain alive, self-regenerative, and functional. This new tunable platform offers previously unattainable properties for a variety of living functional materials having potential applications in biomaterials, biotechnology, and biomedicine.


Assuntos
Bacillus subtilis/fisiologia , Materiais Biocompatíveis/química , Biofilmes , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Materiais Biocompatíveis/metabolismo , Biodegradação Ambiental , Composição de Medicamentos , Elasticidade , Engenharia Genética/métodos , Nanopartículas/química , Paraoxon/metabolismo , Impressão Tridimensional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34762581

RESUMO

A novel growth-promoting and indole acetic acid-producing strain, designated NEAU-LLBT, was isolated from cow dung collected from Shangzhi, Heilongjiang Province, PR China. Cells of strain NEAU-LLBT were Gram-stain-positive, non-motile, aerobic and non-spore-forming. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain NEAU-LLBT belonged to the genus Microbacterium. Strain NEAU-LLBT had high 16S rRNA sequence similarities of 98.81 and 98.41 % to Microbacterium paludicola DSM 16915T and Microbacterium marinilacus DSM 18904T, and less than 98 % to other members of the genus Microbacterium. Chemotaxonomic characteristics showed that MK-11 and MK-12 were detected as the predominant menaquinones. The peptidoglycan contained glutamic acid, aspartic acid, glycine, ornithine and a small amount of alanine, with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The major fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0 and iso-C17 : 0. The genomic DNA G+C content of strain NEAU-LLBT was 70.2 mol%. In addition, the average nucleotide identity values between strain NEAU-LLBT and its reference strains, M. paludicola DSM 16915T, M. marinilacus DSM 18904T and M. album SYSU D8007T, were found to be 81.1, 79.4 and 78.7 %, respectively, and the level of digital DNA-DNA hybridization between them were 23.8, 22.6 and 21.8 %, respectively. Based on the phenotypic, phylogenetic and genotypic data, strain NEAU-LLBT is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium stercoris sp. nov is proposed, with NEAU-LLBT (=CCTCC AA 2018028T=JCM 32660T) as the type strain.


Assuntos
Bovinos/microbiologia , Ácidos Graxos , Fezes/microbiologia , Ácidos Indolacéticos/metabolismo , Microbacterium , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Microbacterium/classificação , Microbacterium/isolamento & purificação , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
BMC Pediatr ; 21(1): 553, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872532

RESUMO

BACKGROUND: To investigate the association between geographic, clinical, socioeconomic factors and delayed management of pediatric testicular torsion (TT) in West China. METHODS: A retrospective study was conducted on TT at Children's Hospital of Chongqing Medical University in West China from November 2004 to December 2020. Univariate analysis and logistic regression analysis were conducted to determine the association between these factors and delayed management of TT. RESULTS: A total of 301 cases were included in this study. The misdiagnosis rate of TT in primary, secondary healthcare units and tertiary hospitals was 93.8, 71.1, and 8.9%, respectively. Approximately 26.9% of TT boys received timely surgical management (within 12 h from symptoms inset to surgery). Logistic regression analyses suggested the following factors were associated with delayed repair of TT: age less than 6 years (P = 0.001), with a history of symptoms progress (P = 0.001) or former treatment (P <0.001), absence of other diagnosis (P = 0.011) and those boys living far away from the main city zones (P <0.001). CONCLUSIONS: Delayed surgical management for TT was more likely for boys with age less than 6 years, the absence of other diagnosis, with a history of former treatment or symptoms progress, and those living far away from the main city zone. To maximize the possibility of timely surgical management for TT, it is vital to strengthen the public awareness of TT and conduct continuously re-education and update physicians working at primary and secondary healthcare units.


Assuntos
Torção do Cordão Espermático , Criança , Diagnóstico Tardio , Demografia , Hospitais Pediátricos , Humanos , Masculino , Estudos Retrospectivos , Fatores Socioeconômicos , Torção do Cordão Espermático/diagnóstico , Torção do Cordão Espermático/epidemiologia , Torção do Cordão Espermático/cirurgia
7.
Ecotoxicol Environ Saf ; 209: 111798, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360214

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), one of the most commonly used endocrine-disrupting chemicals, has been shown to cause reproductive dysfunction in humans and animal models. However, very few studies have investigated the impact of DEHP at the post-transcriptional level in mouse testes, and the underlying mechanisms remain unclear. In the present research, TM3 Leydig cells were treated with 200 µM phthalic acid mono-2-ethylhexyl ester (MEHP, bio-metabolite of DEHP), and then the mRNA and lncRNA sequencing of TM3 Leydig cells was performed. Mice were exposed prepubertally to 0 or 500 mg DEHP/kg/day. RNA sequencing of mouse testes was performed to verify the RNA-seq results in vitro. The expression patterns of relevant genes and proteins were verified using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. DEHP and MEHP exposure led to testicular damage and accelerated cell aging via ROS accumulation. RNA sequencing analyses indicated that FOXO signaling and longevity regulation pathways were activated in resistance to ROS accumulation. FOXO signaling and longevity regulation pathway-related genes and proteins were also activated. By constructing a competing endogenous RNA (ceRNA) network, we observed that the ceRNA network might play a role in regulating FOXO signaling and longevity regulation pathways in response to excessive ROS accumulation and cell aging. In summary, our data here suggests that the ceRNA network may play a role in regulating FOXO signaling and longevity pathways in response to DEHP exposure in mouse testes.


Assuntos
Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , RNA Longo não Codificante/metabolismo , Envelhecimento , Animais , Dietilexilftalato/metabolismo , Disruptores Endócrinos/metabolismo , Regulação da Expressão Gênica , Humanos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Longevidade , Masculino , Camundongos , Ácidos Ftálicos , Testículo/efeitos dos fármacos , Transcriptoma
8.
Ecotoxicol Environ Saf ; 220: 112326, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015638

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is the most common phthalate that can affect the male reproductive system. DEHP exposure at the prepubertal stage could lead to the injury of immature testes, but the mechanism has not been fully clarified. In the present study, we elucidated the possible underlying mechanism of DEHP-induced prepubertal testicular injury through stereological analysis and transcriptome profiling. Compared with the control group, the DEHP-treated rats had lower body weight gain and decreased testicular weight and organ coefficient. Moreover, lower serum levels of testosterone and LH were observed in the DEHP group, in contrast to the increased FSH level. Additionally, the serum level of estradiol had no significant difference after DEHP exposure. Stereological analysis showed significant reduction in volumes of most testicular structures, especially in the seminiferous tubule and seminiferous epithelium, along with a vast decrease of spermatogenic cells and obvious structural damages with substantial pathological signs (germ cracks, cytoplasmic vacuolization, sloughing, multinucleated giant cell formation, chromatolysis desquamation and dissolution, pyknosis of nuclei) in the seminiferous tubule upon DEHP exposure at the prepubertal stage. Furthermore, transcriptome profiling identified 5548 differentially expressed genes (DEGs) upon DEHP exposure. Pathway enrichment analysis revealed several crucial signaling pathways related to retinol metabolism, oxidative phosphorylation, steroid hormone biosynthesis, and cell adhesion molecules (CAMs). In addition, seven DEGs selected from RNA-seq data were validated by quantitative real-time polymerase chain reaction (qRT-PCR), and the results showed the same trends as the RNA-seq results. In conclusion, the above findings provide basic morphological data and lay a foundation for systematic research on transcriptome profiling in prepubertal testicular injury induced by DEHP.


Assuntos
Dietilexilftalato/toxicidade , Poluentes Ambientais/toxicidade , Testículo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Perfilação da Expressão Gênica , Masculino , RNA-Seq , Ratos , Ratos Sprague-Dawley , Testículo/anatomia & histologia , Testículo/fisiologia
9.
Ecotoxicol Environ Saf ; 189: 110053, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31862514

RESUMO

Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) derived from automobile exhaust can lead to serious male spermatogenesis dysfunction, but its specific molecular mechanism is unclear. In this experiment, we focused on the blood-testis barriers (BTB) and explored the intracellular mechanisms underlying the fertility toxicity of PM2.5 originating from automobile exhaust in the primary cultured Sertoli cells(SCs) of rats. After PM2.5 exposure, excessive reactive oxygen species (ROS) and increased apoptosis of SCs were detected. The expression of the BTB related proteins including ZO-1, Occludin, N-cadherin and ß-catenin were significantly decreased and the spatial arrangement of F-actin was completely disordered through Immunofluorescence and Western blots tests. The phosphorylation of Jun N-terminal kinase (JNK), extracellular signal regulatory kinase (ERK), p38 mitogen-activated protein kinase (MAPK) were upregulated and nuclear factor (erythroid-derived 2) -like 2-related factor (Nrf2) was downregulated respectively. However, combined utilization of vitamin C and E were observed to prevent the increase of ROS generation, reduce celluar apoptosis, increase the expression of BTB related proteins, reconstructed the spatial arrangement of F-actin as well as improved the Nrf2 expression and attenuated the phosphorylation of the MAPK kinases and cleaved caspase-3 levels. Furthermore, ERK inhibitor (SCH772984), JNK inhibitor (SP600125) and p38 MAPK inhibitor (SB203580) obviously up-regulated BTB-related proteins expression as well as activated Nrf2 expression at varying degrees, indicating that ROS-MAPKs-Nrf2 is involved in the signaling pathway that leads to PM2.5-induced spermatogenesis dysfunction. These findings indicate that PM2.5 derived from automobile exhaust causes oxidative stress, which in turn causes cellular apoptosis of SCs and damage of the blood-testis barrier, resulting male spermatogenesis dysfunction, in which ROS-MAPK-Nrf-2 pathways may play a key role.


Assuntos
Barreira Hematotesticular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Barreira Hematotesticular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos , Células de Sertoli/metabolismo , Células de Sertoli/patologia
10.
Ecotoxicol Environ Saf ; 167: 161-168, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326357

RESUMO

Long-term exposure to particulate matter 2.5 (PM2.5) from automobile exhaust impairs spermatogenesis through oxidative stress injury, but the underlying mechanism is unknown. To investigate the toxic mechanism of PM2.5-induced spermatogenesis impairment, we focused on the MAPK signaling pathway. We also examined the effects of treatment with vitamins C and E on spermatogenic function. Male SD rats were divided randomly into three groups: control (0.9% sterilized saline), PM2.5 exposure (20 mg/kg.b.w.), and PM2.5 exposure (20 mg/kg.b.w.) with vitamin intervention (vitamin C, 100 mg/kg.b.w.; vitamin E, 50 mg/kg.b.w.). Male rats showed a marked decline in fertility and decreased sperm quality after PM2.5 exposure. The expression of SOD and Nrf2 was significantly decreased, and that of MDA was increased markedly. The expression of blood-testis barrier-associated proteins, such as ZO-1, occludin, connexin 43, and ß-catenin, was significantly decreased, the Bcl-2/Bax ratio was downregulated, and the cleaved caspase-3 level was increased. Phosphorylation of MAPKs, including ERKs, JNKs, and p38, was upregulated. Treatment with vitamins C and E reversed the damage induced by PM2.5 exposure. These results suggest that PM2.5 from automobile exhaust disrupted spermatogenesis via ROS-mediated MAPK pathways, and that a combined vitamin C and E intervention effectively mitigated toxicity in the male reproductive system.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Espermatogênese/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Barreira Hematotesticular/metabolismo , Caspase 3/metabolismo , Conexina 43/metabolismo , Fertilidade/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ocludina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Análise do Sêmen , Transdução de Sinais , Espermatozoides/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Vitamina E/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo , Proteína X Associada a bcl-2/metabolismo , beta Catenina/metabolismo
11.
Front Microbiol ; 15: 1385734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812691

RESUMO

Protaetia brevitarsis larvae (PBL) are soil insects important for the soil organic carbon cycle, and PBL frass not only contains a large amount of humic acid but also affects the diversity, novelty, and potential functions of actinomycetes. Here, we characterized and assessed the actinomycete. The operational taxonomic unit (OTU) data showed that 90% of the actinomycetes cannot be annotated to species, and pure culture and genome analysis showed that 35% of the strains had the potential to be new species, indicating the novelty of PBL frass actinomycetes. Additionally, genome annotation showed that many gene clusters related to antifungal, antibacterial and insecticidal compound synthesis were identified, and confrontation culture confirmed the antifungal activities of the actinomycetes against soil-borne plant pathogenic fungi. The incubation experiment results showed that all isolates were able to thrive on media composed of straw powder and alkaline lignin. These results indicated that PBL hindgut-enriched actinomycetes could survive in soil by using the residual lignocellulose organic matter from plant residues, and the antibiotics produced not only give them a competitive advantage among soil microflora but also have a certain inhibitory effect on plant diseases and pests. This study suggests that the application of PBL frass can not only supplement soil humic acid but also potentially affect the soil microbiota of cultivated land, which is beneficial for the healthy growth of crops.

12.
J Adv Res ; 56: 31-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36933884

RESUMO

INTRODUCTION: It has been shown that polystyrenenanoplastic (PS-NP) exposure induces toxicity in the lungs. OBJECTIVES: This study aims to provide foundational evidence to corroborate that ferroptosis and abnormal HIF-1α activity are the main factors contributing to pulmonary dysfunction induced by PS-NP exposure. METHODS: Fifty male and female C57BL/6 mice were exposed to distilled water or 100 nm or 200 nm PS-NPs via intratracheal instillation for 7 consecutive days. Hematoxylin and eosin (H&E) and Masson trichrome staining were performed to observe the histomorphological changes in the lungs. To clarify the mechanisms of PS-NP-induced lung injury, we used 100 µg/ml, 200 µg/ml and 400 µg/ml 100 or 200 nm PS-NPs to treat the human lung bronchial epithelial cell line BEAS-2B for 24 h. RNA sequencing (RNA-seq) of BEAS-2B cells was performed following exposure. The levels of glutathione, malondialdehyde, ferrous iron (Fe2+), and reactive oxygen species (ROS) were measured. The expression levels of ferroptotic proteins were detected in BEAS-2B cells and lung tissues by Western blotting. Western blotting, immunohistochemistry, and immunofluorescence were used to evaluate the HIF-1α/HO-1 signaling pathway activity. RESULTS: H&E staining revealed substantial perivascular lymphocytic inflammation in a bronchiolocentric pattern, and Masson trichrome staining demonstrated critical collagen deposits in the lungs after PS-NP exposure. RNA-seq revealed that the differentially expressed genes in PS-NP-exposed BEAS-2B cells were enriched in lipid metabolism and iron ion binding processes. After PS-NP exposure, the levels of malondialdehyde, Fe2+, and ROS were increased, but glutathione level was decreased. The expression levels of ferroptotic proteins were altered significantly. These results verified that PS-NP exposure led to pulmonary injury through ferroptosis. Finally, we discovered that the HIF-1α/HO-1 signaling pathway played an important role in regulating ferroptosis in the PS-NP-exposed lung injury. CONCLUSION: PS-NP exposure caused ferroptosis in bronchial epithelial cells by activating the HIF-1α/HO-1 signaling pathway, and eventually led to lung injury.


Assuntos
Ferroptose , Lesão Pulmonar , Camundongos , Humanos , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Lesão Pulmonar/induzido quimicamente , Espécies Reativas de Oxigênio , Brônquios , Amarelo de Eosina-(YS) , Glutationa , Ferro , Malondialdeído
13.
Cancer Res ; 84(10): 1659-1679, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382068

RESUMO

The tumor microenvironment (TME) in renal cell carcinomas (RCC) is marked by substantial immunosuppression and immune resistance despite having extensive T-cell infiltration. Elucidation of the mechanisms underlying immune evasion could help identify therapeutic strategies to boost the efficacy of immune checkpoint blockade (ICB) in RCC. This study uncovered a mechanism wherein the polyadenylate-binding protein PABPC1L modulates indoleamine 2,3-dioxygenase 1 (IDO1), a prospective target for immunotherapy. PABPC1L was markedly upregulated in RCC, and high PABPC1L expression correlated with unfavorable prognosis and resistance to ICB. PABPC1L bolstered tryptophan metabolism by upregulating IDO1, inducing T-cell dysfunction and Treg infiltration. PABPC1L enhanced the stability of JAK2 mRNA, leading to increased JAK2-STAT1 signaling that induced IDO1 expression. Additionally, PABPC1L-induced activation of the JAK2-STAT1 axis created a positive feedback loop to promote PABPC1L transcription. Conversely, loss of PABPC1L diminished IDO1 expression, mitigated cytotoxic T-cell suppression, and enhanced responsiveness to anti-PD-1 therapy in patient-derived xenograft models. These findings reveal the crucial role of PABPC1L in facilitating immune evasion in RCC and indicate that inhibiting PABPC1L could be a potential immunotherapeutic approach in combination with ICB to improve patient outcomes. SIGNIFICANCE: PABPC1L functions as a key factor in renal cell carcinoma immune evasion, enhancing IDO1 and impeding T-cell function, and represents a potential target to enhance the efficacy of immune checkpoint blockade therapy.


Assuntos
Carcinoma de Células Renais , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias Renais , Triptofano , Microambiente Tumoral , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Triptofano/metabolismo , Animais , Camundongos , Microambiente Tumoral/imunologia , Janus Quinase 2/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Environ Sci Pollut Res Int ; 30(55): 118025-118047, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37874519

RESUMO

The Information and Communication Technology (ICT) industry takes on critical significance in promoting economic development and reducing carbon emissions. From the agglomeration perspective, how the ICT industry agglomeration affects carbon emission efficiency (CEE) in 30 provinces in China from 2006 to 2020 is innovatively investigated. We measured CEE using a dynamic directional distance function-based DEA model. Then, based on the research hypotheses, the specific impact and transmission mechanism of ICT industrial agglomeration on CEE are revealed using a spatial Dubin model and a threshold panel model. The results show that: (1) the ICT industry agglomeration exerts a remarkable inverted "U-shaped" effect on CEE. This non-linear effect is significant in the eastern and central regions, but not in the western region. (2) ICT industry agglomeration can affect CEE in neighboring regions. The spatial spillover effect shows an inverted "U-shaped" in the central region, positive in the western region, and insignificant in the eastern region. (3) when green technology innovation exceeds the threshold value (4.948), ICT industry agglomeration positively affects CEE, and when energy structure exceeds the threshold value (0.389), their marginal effects are significantly negative. The threshold effect also shows regional heterogeneity. This research proposes policy recommendations focusing on accelerating the ICT industry transformation, leveraging the spillover and technological advantages of agglomeration, and enhancing regional cooperation.


Assuntos
Comunicação , Tecnologia da Informação , China , Tecnologia , Carbono , Desenvolvimento Econômico , Dióxido de Carbono , Eficiência
15.
J Hazard Mater ; 452: 131234, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963198

RESUMO

Although it has been reported that perinatal, especially prenatal exposure to polybrominated diphenyl ethers (PBDEs) alters offspring's fertility, but little is known regarding their longitudinal effects over time. In the current study, we determined the associations between prenatal exposure to 2,2',4,4',5-pentabromodiphenyl ether (PBDE-99) of environmentally relevant levels in pregnant ICR mice and spermatogenic impairments in male offspring on postnatal day 70. Then, we monitored functional injuries in spermatogenic cells (GC-1 spg) exposed to PBDE-99 in vitro. Furthermore, transcriptome sequencing and bioinformatic analysis were used to investigate the underlying mechanism of PBDE-99 exposure to GC-1 spg. Additionally, the expression levels of key genes in the relevant pathways were quantified. Our findings indicated that exposure to PBDE-99 caused significantly spermatogenic injuries, which partly owing to the accumulation of reactive oxygen species, dysregulation of autophagy, and finally induced spermatogenic cell apoptosis. Rescue validation experiments showed that stimulating autophagy could alleviate spermatogenic cell injury induced by PBDE-99. In conclusion, our findings indicated that the dysfunction of autophagy played a significant role in long-term reproductive toxicity following prenatal exposure to environmental concentrations of PBDE-99.


Assuntos
Éteres Difenil Halogenados , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Animais , Humanos , Feminino , Masculino , Éteres Difenil Halogenados/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Camundongos Endogâmicos ICR , Autofagia
16.
Andrology ; 11(4): 724-737, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36603597

RESUMO

BACKGROUND: Exposure to heat waves could result in adverse effects on human health, especially in male testicles. PIWI-interacting RNA (piRNA) is a novel type of small non-coding RNA, which can notably impact mRNA turnover and preserve germline maintenance in germline cells. However, piRNA's expression status when adapting to testicular heat stress remains largely unclear. OBJECTIVES: To investigate the function and mechanisms of relevant piRNAs during testicular heat stress. MATERIALS AND METHODS: In this study, a mouse testicular heat stress model was constructed, and the testes were removed for piRNA-sequencing. Bioinformatics analysis was used to discover the differential expressed piRNAs, piRNA clusters, and enriched pathways. A cell heat stress model was constructed to validate the top five upregulated piRNAs. Proliferation and apoptosis assays were utilized to validate the function of selected piRNA. Bioinformatics prediction, western blotting, and immunohistochemistry were used to illustrate the downstream mechanisms. RESULTS: Through the bioinformatics analysis, we identified the differential expression profile and enriched pathways of piRNAs and piRNA clusters during testicular hyperthermia. Besides, piR-020492 was proved to be upregulated in heat stress mouse testes and a germ cell model. A series of in vitro assays illustrated that an overexpression of piR-020492 could restrain the proliferation and promote the apoptosis of mouse germ cells. Kyoto Encyclopedia of Genes and Genomes analysis of piRNA-generating genes in the testicular heat stress model and piR-020492 targeting genes showed that the overlap pathways are adenosine monophosphate-activated protein kinase (AMPK) and insulin pathways. Validation experiments demonstrated that the key genes of AMPK and insulin pathway exhibit differential expression after an overexpression of piR-020492 or testicular heat stress. DISCUSSION AND CONCLUSION: In conclusion, our findings revealed the expression profile of piRNAs in testicular heat stress and illustrated the function and mechanisms of piR-020492 in germ cells, which could provide novel insights into the mechanism of hyperthermia-induced testicular injury.


Assuntos
Insulinas , RNA de Interação com Piwi , Animais , Camundongos , Humanos , Masculino , RNA Interferente Pequeno/genética , Testículo/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Temperatura , Insulinas/metabolismo
17.
J Hazard Mater ; 445: 130544, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36493639

RESUMO

Polystyrene microplastics (PS-MPs) can threaten human health, especially male fertility. However, most existing studies have focused on the adulthood stage of male reproduction toxicity caused by relatively short-term PS-MP exposure. This study aimed to investigate the toxic effect of PS-MPs on testicular development and reproductive function upon prenatal and postnatal exposure. Pregnant mice and their offspring were exposed to 0, 0.5 mg/L, 5 mg/L, and 50 mg/L PS-MPs through their daily drinking water from gestational day 1 to postnatal day (PND) 35 or PND70. We found that PS-MP exposure induced testis development disorder by PND35 and spermatogenesis dysfunction by PND70. By combining RNA sequencing results and bioinformatics analysis, the hormone-mediated signaling pathway, G1/S transition of the mitotic cell cycle, coregulation of androgen receptor activity, and Hippo signaling pathway were shown to be involved in testis development on PND35. The meiotic cell cycle, regulation of the immune effector process, neutrophil degranulation, and inflammation mediated by chemokine and cytokine signaling pathways were associated with disturbed spermatogenesis on PND70. These findings show that prenatal and postnatal exposure to PS-MPs resulted in testis development disorder and male subfertility, which may be regulated by the Hippo signaling pathway and involve an immune reaction.


Assuntos
Poliestirenos , Doenças Testiculares , Gravidez , Feminino , Humanos , Criança , Camundongos , Masculino , Animais , Adulto , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos , Deficiências do Desenvolvimento , Fertilidade
18.
Food Chem Toxicol ; 176: 113780, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059381

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) early exposure leads to immature testicular injury, and we aimed to utilize single-cell RNA (scRNA) sequencing to comprehensively assess the toxic effect of DEHP on testicular development. Therefore, we gavaged pregnant C57BL/6 mice with 750 mg/kg body weight DEHP from gestational day 13.5 to delivery and performed scRNA sequencing of neonatal testes at postnatal day 5.5. The results revealed the gene expression dynamics in testicular cells. DEHP disrupted the developmental trajectory of germ cells and the balance between the self-renewal and differentiation of spermatogonial stem cells. Additionally, DEHP caused an abnormal developmental trajectory, cytoskeletal damage and cell cycle arrest in Sertoli cells; disrupted the metabolism of testosterone in Leydig cells; and disturbed the developmental trajectory in peritubular myoid cells. Elevated oxidative stress and excessive apoptosis mediated by p53 were observed in almost all testicular cells. The intercellular interactions among four cell types were altered, and biological processes related to glial cell line-derived neurotrophic factor (GDNF), transforming growth factor-ß (TGF-ß), NOTCH, platelet-derived growth factor (PDGF) and WNT signaling pathways were enriched after DEHP treatment. These findings systematically describe the damaging effects of DEHP on the immature testes and provide substantial novel insights into the reproductive toxicity of DEHP.


Assuntos
Dietilexilftalato , Camundongos , Gravidez , Animais , Masculino , Feminino , Dietilexilftalato/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Testículo
19.
Front Genet ; 13: 957317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159985

RESUMO

Background: Massive amounts of omics data are produced and usually require sophisticated visualization analysis. These analyses often require programming skills, which are difficult for experimental biologists. Thus, more user-friendly tools are urgently needed. Methods and Results: Herein, we present GraphBio, a shiny web app to easily perform visualization analysis for omics data. GraphBio provides 15 popular visualization analysis methods, including heatmap, volcano plots, MA plots, network plots, dot plots, chord plots, pie plots, four quadrant diagrams, Venn diagrams, cumulative distribution curves, principal component analysis (PCA), survival analysis, receiver operating characteristic (ROC) analysis, correlation analysis, and text cluster analysis. It enables experimental biologists without programming skills to easily perform popular visualization analysis and get publication-ready figures. Conclusion: GraphBio, as an online web application, is freely available at http://www.graphbio1.com/en/ (English version) and http://www.graphbio1.com/ (Chinese version). The source code of GraphBio is available at https://github.com/databio2022/GraphBio.

20.
Front Public Health ; 10: 905609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664123

RESUMO

Background: Testicular torsion is an acute scrotal disease requiring urgent management, and the COVID-19 pandemic has been demonstrated to lead to poor outcomes for this disease. Presently, many people tend to seek health information via YouTube. This study aims to quantitatively assess the quality of English YouTube video content as an information source of testicular torsion. Methods: In this cross-sectional study, a search was performed with the search term "testicular torsion" on YouTube, and the first 100 videos listed by relevance were selected for our analysis. Duplicate, non-English, videos without audio and surgical videos were excluded. Video features (duration, number of days online, views, likes, comments), source of the video, and author's country were collected. Each video included in the study was assessed using DISCERN and Journal of the American Medical Association (JAMA) Benchmark Criteria. A correlation analysis was performed considering video features, video source, DISCERN scores and JAMA scores. Results: A total of 66 videos were included and analyzed. The most common video content was general information, including etiology, symptoms, and treatment. The majority of videos were from education and training websites (30%), physicians (23%), and independent users (21%). The mean DISCERN and JAMA scores were 36.56 and 2.68, respectively. According to DISCERN, the quality of video uploaded by physicians was relatively high (P < 0.001), and the quality of video uploaded by independent users was relatively low (P < 0.001). The JAMA score had no relevance to the video source (P = 0.813). The correlation between the video features, DISCERN and JAMA scores was controversial by different assessment methods. Conclusions: Despite most of the videos on YouTube being uploaded by medical or education-related authors, the overall quality was poor. The misleading, inaccurate and incomplete information may pose a health risk to the viewers, especially during the COVID-19 pandemic. Much effort needs to be undertaken to improve the quality of health-related videos regarding testicular torsion.


Assuntos
COVID-19 , Mídias Sociais , Torção do Cordão Espermático , Estudos Transversais , Humanos , Disseminação de Informação/métodos , Masculino , Pandemias , Reprodutibilidade dos Testes , Estados Unidos , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa