Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Opt Express ; 31(15): 23830-23839, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475224

RESUMO

This article proposes and numerically demonstrates a widely tunable on-chip Raman soliton source based on a cascaded As2Se3 waveguide. The cascaded sub-waveguides (input and output) with varying widths act as nonlinear devices, while a tapered waveguide is arranged between them to achieve low-loss transmission. The input waveguide provides anomalous dispersion in the near-infrared band, thereby enabling the 1.96 µm source for Raman soliton self-frequency shift (SSFS) pumping. The output waveguide exhibits large anomalous dispersion and good mode confinement in the mid-infrared band thus supporting further SSFS process. A 2.29∼4.57 µm tunable Raman source is theoretically realized in this on-chip platform. This work presents a simple and easy-to-implement strategy to extend the tuning range of on-chip sources. Notably, to the best of our knowledge, this is the first demonstration of the cascading strategy for SSFS process in an on-chip platform. The proposed tunable source has great potential in integrated spectroscopy, gas sensing, and LiDAR applications.

2.
Environ Res ; 239(Pt 2): 117411, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839532

RESUMO

The coastal area of Yancheng, China, is one of the hotspots for ecological research. Under the coupling of human and natural ecosystems, the region has gradually evolved into a coexistence of aquatic, agricultural and mudflat ecosystems. What are the patterns of natural and artificial resource inputs and patterns of change in ecosystems? How can ecological flows be analyzed at a uniform scale? Here, we selected six typical local ecosystems, namely, rice‒wheat for enterprises (RWE), rice‒wheat for smallholder households (RWS), chrysanthemum‒wheat (CW), fish polyculture (FP), juvenile crab farming (JF) and clam polyculture (CP), and analyzed their energy flow flux and sustainability based on emergy theory. The results showed that anthropogenic resource inputs were higher than natural resource inputs in all ecosystems, and the inputs of aquatic ecosystems were greater than those of agroecosystems. The greatest total input was 2.0 E+17 seJ/ha/yr for FP, and the lowest was 1.9 E+16 seJ/ha/yr for RWE. The proportions of renewable and artificial inputs for RWE, RWS, CW, FP, JF and CP were 32.8% vs. 96.1%, 40.3% vs. 96.5%, 34.7% vs. 97.0%, 32.6% vs. 99.4%, 55.1% vs. 98.5%, and 62.5% vs. 98.6%, respectively. The highest input to agroecosystems was nitrogen fertilizer, while in JF and CP, it was water, and feed (63.3%) accounted for the highest percentage of input in FP. JF and CP had lower environmental loads and higher sustainability than other ecosystems, but this still represents a high input compared to agroecosystems. Human-led resource coupling profoundly affects ecosystem sustainability, and various thresholds of energy use and ecological sustainability need to be studied in depth. Continuous exploration of methods and mechanisms for the maintenance and evolution of ecosystems with low total inputs and low inputs of non-renewable resources can contribute to high-quality sustainable development of an area or region.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Agricultura/métodos , China , Triticum
3.
Nano Lett ; 22(1): 441-447, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965149

RESUMO

To mitigate lithium-polysulfides (Li-PSs) shuttle in lithium-sulfur batteries (LiSBs), a unique carbon-nanotube-encapsulated-sulfur (S@CNT) cathode material with optimum open-ring sizes (ORSs) on the CNT walls were designed using an integrated computational approach followed by experimental validation. By calculating the transport barrier of Li+ ion through ORSs on the CNT walls and comparing the molecular size of solvents and Li-PSs with ORSs, optimum open-rings with 16-30 surrounding carbon atoms were predicted to selectively allow transportation of Li+ ion and evaporated sulfur while blocking both Li-PS and solvent molecules. A CNT oxidation process was proposed and simulated to generate these ORSs, and the results indicated that the optimum ORSs can be achieved by narrowly controlling the oxidation parameters. Subsequently, S@CNT cathodes were experimentally synthesized, confirming that optimum ORSs were generated in CNT oxidized at 475 K and exhibited more stable cycling behavior.

4.
Inorg Chem ; 57(8): 4230-4233, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29620354

RESUMO

A photoactive triazolobenzothiadiazole (TBTD)-conjugated terphenyldicarboxylate (TPDC) linker was introduced into a porous and robust UiO-68 isoreticular zirconium metal-organic framework (denoted as UiO-68-TBTD) by the de novo synthetic approach of mixed TPDC struts. Under blue-light-emitting-diode irradiation, UiO-68-TBTD can serve as a heterogeneous photocatalyst for the highly efficient and selective oxidation of a sulfur mustard simulant (2-chloroethyl ethyl sulfide) to the corresponding much less toxic sulfoxide product, with a half-life of only 3 min in the open air atmosphere.

5.
Langmuir ; 33(28): 6991-6998, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28657756

RESUMO

Because high-index facets (HIFs) possess high surface energy, the metal nanoparticles enclosed with HIFs are eliminated during their growth in a conventional shape-controlled synthesis due to the thermodynamics that drives the particles minimizing their total surface energy. This study develops a double-step potential method to prepare an unprecedentedly stellated Au nanocrystals (NCs) bounded by high-index {711} and {331} facets in deep eutectic solvent (DES) medium. The formation of Au NCs bounded by HIFs was systematically studied. It has demonstrated that the shapes of Au NCs are strongly dependent on the size of seeds and the growth potentials as well as the urea adsorbates in the DES. By adjusting the size of seeds and the growth potentials, the stellated Au NCs can be transformed into concave hexoctahedra (HOH) with high-index {421} facets and concave trisoctahedra (TOH) with high-index {991} facets. The electrocatalytic activities of the as-prepared Au NCs are evaluated by glucose oxidation. Thanks to HIFs having high density of atomic steps and kinks, the stellated, TOH, and HOH Au NCs exhibit higher electrocatalytic activity than that of the polycrystalline Au electrode, demonstrating that the steps and kinks serve as the active sites and play an important role in glucose electro-oxidation.

6.
Phys Chem Chem Phys ; 19(47): 31553-31559, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29115350

RESUMO

We have reported, for the first time, in situ growth of high-index {hk0} faceted concave Pt nanocubes on multi-walled carbon nanotubes (CNTs) via an electrochemical method in choline chloride-urea (ChCl-U) based deep eutectic solvents (DESs). Mechanistic studies indicate that a urea hydrogen bond donor (HBD) plays a key role in the formation of concave Pt nanocubes, in which the urea HBD preferentially adsorbs onto the {100} faces and blocks the growth of nanocrystals along the 〈100〉 axis. The as-prepared concave Pt nanocubes are characterized to be enclosed mainly with high-index {710}, {610} and {510} facets. It has been determined that the concave cubic Pt/CNT exhibits higher catalytic activity and stability than the flower-like Pt/CNT and commercial Pt/C catalysts, and this is ascribed to its high density of surface atomic steps and the synergistic effect between the CNT and Pt nanocubes.

7.
Inorg Chem ; 55(3): 1005-7, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828948

RESUMO

A zirconium(IV)-based UiO-topological metal-organic framework (UiO-68Se) containing benzoselenadiazole was synthesized by an approach of the mixed dicarboxylate struts, which show highly efficient and recycalable photocatalytic activity for aerobic cross-dehydrogenative coupling reactions between tertiary amines and various carbon nucleophiles under visible-light irradiation.

8.
FASEB J ; 28(6): 2677-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24619089

RESUMO

In gram-negative bacteria, the assembly of outer membrane proteins (OMPs) requires a ß-barrel assembly machinery (BAM) complex, of which BamA is an essential and evolutionarily conserved component. To elucidate the mechanism of BamA-mediated OMP biogenesis, we determined the crystal structure of the C-terminal transmembrane domain of BamA from Escherichia coli (EcBamA) at 2.6 Å resolution. The structure reveals 2 distinct features. First, a portion of the extracellular side of the ß barrel is composed of 5 markedly short ß strands, and the loops stemming from these ß strands form a potential surface cavity, filled by a portion of the L6 loop that includes the conserved VRGF/Y motif found in the Omp85 family. Second, the 4 extracellular loops L3, L4, L6, and L7 of EcBamA form a dome over the barrel, stabilized by a salt-bridge interaction network. Functional data show that hydrophilic-to-hydrophobic mutations of the potential hydrophilic surface cavity and a single Arg547Ala point mutation that may destabilize the dome severely affect the function of EcBamA. Our structure of the EcBamA ß barrel and structure-based mutagenesis studies suggest that the transmembrane ß strands of OMP substrates may integrate into the outer membrane at the interface of the first and last ß strands of the EcBamA barrel, whereas the soluble loops or domains may be transported out of the cell via the hydrophilic surface cavity on dislocation of the VRGF/Y motif of L6. In addition, the dome over the barrel may play an important role in maintaining the efficiency of OMP biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Terciária de Proteína
9.
J Anim Sci ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902909

RESUMO

The aim of this study was to investigate the effects of ensiled agricultural byproducts from Qinghai-Tibet plateau on growth performance, rumen microbiota, ruminal epithelium morphology and nutrient transport-related gene expression in Tibetan sheep. Fourteen male Tibetan sheep were randomly assigned to one of two diets: an untreated diet (without silage inoculum, CON, n=7) or an ensiled diet (with silage inoculum, ESD, n=7). The total experimental period lasted for 84 days, including early 14 days as adaption period and remaining 70 days for data collection. The ESD increased average daily gain (ADG, P = 0.046), dry matter intake (P < 0.001), ammonia nitrogen (NH3-N, P = 0.045), microbial crude protein (MCP, P = 0.034) and total volatile fatty acids (VFA) concentration (P < 0.001), and decreased ruminal pH value (P = 0.014). The proportion of propionate (P = 0.046) and the copy numbers of bacteria (P = 0.01) and protozoa (P = 0.002) were higher, while the proportion of acetate (P = 0.028) was lower in the sheep fed ESD compared to CON. Pyrosequencing of the 16S ribosomal RNA gene revealed that ESD increased the relative abundance of Firmicutes, Ruminococcus, Lachnospiraceae_AC2044_group, Lachnospiraceae_XPB1014_group, Christensenellaceae_R-7_group in the rumen (P < 0.05), while decreased the relative abundance of Bacteroidota, Prevotellaceae_UCG-003, and Veillonellaceae_UCG-001 (P < 0.05). Analyses with PICRUSt2 and STAMP indicated that the propionate metabolism pathway was enriched in the sheep fed ESD (P = 0.026). The ESD increased the rumen papillae height (P = 0.012), density (P = 0.036), and surface area (P = 0.001), and improved the thickness of the total epithelia (P = 0.018), stratum corneum (P = 0.040), stratum germinativum (P = 0.042), and stratum spinosum and basale (P = 0.004). The relative mRNA expression of Cyclin-dependent Kinase 2 (CDK2), CyclinA2, CyclinD2, zonula occludens (ZO-1), Occludin, monocarboxylate transporter isoform 1 (MCT1), monocarboxylate transporter isoform 4 (MCT4), sodium/potassium pump (Na+/K+-ATPase), and sodium/hydrogen antiporter 3 (NHE3) were higher in the rumen epithelial of sheep fed ESD than CON (P < 0.05). Conversely, the relative mRNA expressions of Caspase 3 and B-cell lymphoma-2 (Bcl-2) were lower in the sheep fed ESD than CON (P < 0.05). In conclusion, compared with untreated diet, feeding an ensiled diet altered the rumen microbial community, enhanced nutrient transport through rumen epithelium, and improved the growth performance of Tibetan sheep.

10.
Environ Monit Assess ; 185(5): 4005-18, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22965946

RESUMO

The middle and lower reaches of the Yangtze River basin have the most representative and largest concentration of freshwater lakes in China. However, the size and number of these lakes have changed considerably over the past century due to the natural and anthropogenic impact. The lakes, larger than 10 km(2) in size, were chosen from relief maps and remotely sensed images in 1875, 1950, 1970, 1990, 2000, and 2008 to study the dynamics of lakes in the middle and lower reaches of the Yangtze River basin and to examine the causes and consequences of these changes. Results indicated that there was a dramatic reduction in lake areas, which decreased by 7,841.2 km(2) (42.64 %) during the study period (1875-2008), and the number of lakes in this region changed moderately. Meanwhile, a large number of lakes in the middle and lower reaches of the Yangtze River basin were directly converted into paddy fields, ponds, building lands, or other land-use types over the study period. Therefore, all kinds of lake reclamation should be identified as the major driving factors for the loss of lake in this region. Furthermore, flooding, soil erosion, and sedimentation were also the main factors which triggered lake changes in different periods. Some wetland conservation and restoration projects have been implemented since the 1970s, but they have not reversed the lake degradation. These findings were of great importance to managers involved in making policy for the conservation of lake ecosystems and the utilization of lake resources.


Assuntos
Monitoramento Ambiental , Lagos/química , Poluição Química da Água/história , China , Ecossistema , História do Século XIX , Tecnologia de Sensoriamento Remoto , Rios/química , Poluição Química da Água/análise , Poluição Química da Água/estatística & dados numéricos
11.
Animals (Basel) ; 13(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37627442

RESUMO

Copper, manganese, and iodine are part of a yak's required trace elements. However, knowledge about their dietary requirements is scarce. Therefore, an experiment was conducted to evaluate rumen fermentation, blood parameters, and growth performance and screen out the optimum levels of trace elements in yaks' diet. Here, 18 three-year-old castrated yaks were randomly divided into four groups, which fed with diets containing basal (CON: 4.40, 33.82, and 0 mg/kg) and low-level (LL: 10.00, 40.00, and 0.30 mg/kg), middle-level (ML: 15.00, 50.00, and 0.50 mg/kg), and high-level (HL: 20.00, 60.00, and 0.70 mg/kg) copper, manganese, and iodine for 30 days. With the increase in trace elements, yaks' daily weight gain (DWG), rumen pH, ammonia nitrogen, microbial protein (MCP), and volatile fatty acids levels and serum triglycerides and urea nitrogen levels showed firstly increasing and then decreasing trends and reached the highest values in ML, and serum ceruloplasmin and total superoxide dismutase (T-SOD) activities showed continuously increasing trends. Yaks' DWG, rumen MCP, butyrate, and valerate levels and serum triglycerides, urea nitrogen, ceruloplasmin, and T-SOD levels in ML were significantly higher than CON. Therefore, the recommended levels of copper, manganese, and iodine in growing yaks' diet are 15.00, 50.00, and 0.50 mg/kg (ML), respectively.

12.
Chem Commun (Camb) ; 59(95): 14149-14152, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37955226

RESUMO

The perovskite-type La(0.5+x)Sr(0.5-x)FeO3-δ (x = 0.00, 0.10, 0.20) oxides for the electrocatalytic oxygen reduction reaction (ORR) were synthesized by a facile reaction-EDTA/citric acid mixed complex sol-gel method. The cubic single-phase perovskite structure of the as-prepared oxides is demonstrated using powder X-ray diffraction (XRD). Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy/selected area electron diffraction (TEM-SAED), and X-ray photoelectron spectroscopy (XPS) characterizations were also conducted for the perovskite-type La(0.5+x)Sr(0.5-x)FeO3-δ (x = 0.00, 0.10, 0.20) oxides. Furthermore, the electrochemical ORR properties of the as-prepared oxides in alkaline media were studied, with the oxides exhibiting good electrocatalytic ORR performance.

13.
Chem Commun (Camb) ; 59(86): 12863-12866, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37815878

RESUMO

Quinary RuRhPdPtAu high-entropy alloy nanoparticles (HEA-NPs) were prepared for the first time from a deep eutectic solvent by an electrochemical method. Owing to the benefits of high entropy and abundant surface active sites, the RuRhPdPtAu HEA-NPs exhibit outstanding electrocatalytic performance for the hydrogen evolution reaction.

14.
Chemosphere ; 335: 139080, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263510

RESUMO

Important functions of constructed wetland related to biogeochemical processes are mediated by soil microbes and low-temperature damage is the main limiting factor for microbes in winter. However, the response thresholds for active microbial community and enzyme activities to continuous decreases in temperature remain unclear. In this study, total 90 soil samples were collected every week over a 6-week period to track the dynamics of four enzymes involved in cycles of C, N, P and active bacterial community as field soil temperature decreased continuously from 6.62 °C to 0.55 °C. Enzyme activity changed suddenly when the temperature decreased to 4.83 °C, the nitrite reductase activity reduced by 36.2%, while alkaline phosphatase activity is increased by 396%. The cellulase and urease were only marginally influenced by cold stress. Decreased nitrite reductase activities corresponded with loss of nir-type denitrifiers important for nitrite reduction. For cold stress, N-related bacteria were sensitive species. Whereas increased alkaline phosphatase activity may be due to the fact that P-related bacteria were opportunistic species. Key functional taxa connected with degradation of cellulose promoted species coexistence and microbial network stability. The lower and upper temperature thresholds for community change were 4.85 °C and 6.30 °C, respectively. Collectively, these results revealed that microbial taxa involved in C, N and P cycling respond differently to continuous decreases in temperature and higher than 4.85 °C is an ideal environment to prevent loss of microbial diversity and functions in winter, providing a scientific reference for the targeted isolation and cultivation of key microbial taxa in rhizosphere soil and adjusting temperature range to improve the purification capacity of wetlands during low temperature periods.


Assuntos
Microbiota , Áreas Alagadas , Temperatura , Fosfatase Alcalina/metabolismo , Bactérias/metabolismo , Solo/química , Nitrito Redutases/metabolismo , Microbiologia do Solo
15.
Front Vet Sci ; 10: 1175894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360409

RESUMO

Introduction: Manganese (Mn) is an essential trace element for livestock, but little is known about the optimal Mn source and level for yak. Methods: To improve yak's feeding standards, a 48-h in vitro study was designed to examine the effect of supplementary Mn sources including Mn sulfate (MnSO4), Mn chloride (MnCl2), and Mn methionine (Met-Mn) at five Mn levels, namely 35 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, and 70 mg/kg dry matter (includes Mn in substrates), on yak's rumen fermentation. Results: Results showed that Met-Mn groups showed higher acetate (p < 0.05), propionate, total volatile fatty acids (p < 0.05) levels, ammonia nitrogen concentration (p < 0.05), dry matter digestibility (DMD), and amylase activities (p < 0.05) compared to MnSO4 and MnCl2 groups. DMD (p < 0.05), amylase activities, and trypsin activities (p < 0.05) all increased firstly and then decreased with the increase of Mn level and reached high values at 40-50 mg/kg Mn levels. Cellulase activities showed high values (p < 0.05) at 50-70 mg/kg Mn levels. Microbial protein contents (p < 0.05) and lipase activities of Mn-Met groups were higher than those of MnSO4 and MnCl2 groups at 40-50 mg/kg Mn levels. Discussion: Therefore, Mn-met was the best Mn source, and 40 to 50 mg/kg was the best Mn level for rumen fermentation of yaks.

16.
Phys Chem Chem Phys ; 14(37): 12737-40, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22890295

RESUMO

The polyprotic acid H(3)PO(4) in a Li(2)SO(4) supporting electrolyte has been effectively utilized as a catholyte donating three protons in dual-electrolyte Li-air cells. The cell offers a high capacity of 740 mA h g(-1) at an average cell voltage of 3.3 V with good rechargeability and stability.

17.
J Environ Monit ; 14(11): 3037-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23064726

RESUMO

This study focused on the identification of the hydrodynamics of a horizontal subsurface constructed wetland (HSSF-CW) located in Beijing wildlife rescue and rehabilitation center, Beijing. The effects of plant growth of iris tectorum on the hydrodynamic behaviours were studied and the distribution of the hydraulic residence time was simulated by several mathematical models in order to understand the fluctuations and mixing processes of pollutants in the HSSF-CW. Treatment performance of the HSSF-CW was evaluated by comparing the area-based removal rates of different pollutants. According to the results, water depth has a negative effect on the plant growth and a larger hydraulic loading rate is not conducive to the growth of wetland plants. Modelling the probability density of the residence time distribution indicated that the shorter hydraulic residence time of 10.16 hours compared with a theoretical hydraulic residence time of 12.81 hours was responsible for the lower removal efficiency of pollutants (T-P: 0.17 ± 0.04 g m(-2) day(-1), T-N: 1.10 ± 0.05 g m(-2) day(-1), PO(4)-P: 0.08 ± 0.04 g m(-2) day(-1), NH(4)-N: 0.19 ± 0.02 g m(-2) day(-1), NO(3)-N: 0.52 ± 0.03 g m(-2) day(-1), Chl_a: 18.26 ± 0.09 g m(-2) day(-1)). The results of a superposition simulation of residence time distribution indicated that the asymmetric double sigmoidal (asym2sig) model is competent at providing a reasonable match between the measured and the predicted values to some extent. Based on the good fit of the experimental datasets by the asym2sig probability density function, the mathematical expectation approximated to the actual hydraulic residence time (10.16 hours) of the HSSF-CW.


Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Áreas Alagadas , Plantas/classificação , Eliminação de Resíduos Líquidos/métodos , Movimentos da Água
18.
RSC Adv ; 12(3): 1638-1644, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425204

RESUMO

Metal-organic framework (MOF) materials provide a versatile and promising platform for constructing heterogeneous photocatalysts with applications in organic transformations. One of the methods for enhancing MOFs' performance in photocatalysis relies on the elaborate design and functionalization of organic linkers. Here we reported a photoactive thiadiazolopyridine (TDP) moiety functionalized UiO-68 isoreticular Zr(iv)-based MOF (denoted as UiO-68-TDP) that was synthesized by the de novo approach of mixed dicarboxylate struts. Under blue LED irradiation and in an open air atmosphere, MOF UiO-68-TDP exhibited a largely higher photocatalytic activity for the synthesis of tetrahydroquinolines by oxidative annulation reaction between N,N-dimethylanilines and maleimides, in comparison to the benzothiadiazole decorated analogue MOF. Besides, UiO-68-TDP can be reused at least three times without significant loss of its photocatalytic activity and its framework was well maintained after these cycles. Furthermore, the related mechanism involving reactive oxygen species was properly proposed.

19.
Nanomaterials (Basel) ; 12(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144880

RESUMO

Antimony (Sb) is considered a promising anode for Li-ion batteries (LIBs) because of its high theoretical specific capacity and safe Li-ion insertion potential; however, the LIBs suffer from dramatic volume variation. The volume expansion results in unstable electrode/electrolyte interphase and active material exfoliation during lithiation and delithiation processes. Designing flexible free-standing electrodes can effectively inhibit the exfoliation of the electrode materials from the current collector. However, the generally adopted methods for preparing flexible free-standing electrodes are complex and high cost. To address these issues, we report the synthesis of a unique Sb nanoparticle@N-doped porous carbon fiber structure as a free-standing electrode via an electrospinning method and surface passivation. Such a hierarchical structure possesses a robust framework with rich voids and a stable solid electrolyte interphase (SEI) film, which can well accommodate the mechanical strain and avoid electrode cracks and pulverization during lithiation/delithiation processes. When evaluated as an anode for LIBs, the as-prepared nanoarchitectures exhibited a high initial reversible capacity (675 mAh g-1) and good cyclability (480 mAh g-1 after 300 cycles at a current density of 400 mA g-1), along with a superior rate capability (420 mA h g-1 at 1 A g-1). This work could offer a simple, effective, and efficient approach to improve flexible and free-standing alloy-based anode materials for high performance Li-ion batteries.

20.
Sci Total Environ ; 818: 151673, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34793796

RESUMO

Salt marshes are highly productive intertidal wetlands located in temperate climatic zones, in which marine-to-terrestrial transition significantly influences microbial life. Numerous studies revealed the important coupling relationship between microbial diversity and ecosystem functions in terrestrial ecosystems, however, the importance of microbial diversity in maintaining soil functions in coastal ecosystems remains poorly understood. Here, we studied the shifts of microbial communities and soil multifunctionality (SMF; nine functions related with C, N and P cycling) along a vegetation gradient in a salt marsh ecosystem and investigated the microbial diversity - ecosystem function relationship. The aboveground vegetation shifted from mud flat (MF) to Scirpus triqueter (SM) and then Phragmites australis (PA) with increasing distance away from the sea. Average approach showed that the SMF was much higher in halophytes covered zones including SM and PA than in MF. Structural equation model (SEM) analysis confirmed that vegetation was an important predictor on SMF besides moisture and organic carbon. Linear regression and multiple threshold methods showed that in MF and SM zones, fungal rather than bacterial richness was significantly and positively correlated with SMF, while in the PA zone microbial diversity did not relate with SMF. Random forest analysis identified several Ascomycota taxa with preference over marine environment as strong predictors of SMF. Taken together, our study lays the basis for a better understanding on the relationships between belowground microbial diversity and soil functions in coastal ecosystems.


Assuntos
Microbiota , Áreas Alagadas , Ecossistema , Fungos , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa