Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Pharm ; 11(11): 4258-69, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25238329

RESUMO

It is one of the challenges for a wide clinical application of polymer micelles to address the structure disintegration and premature drug release before reaching a pathological site. In the current study, folic acid (FA)-decorated polymer-drug conjugates (FSC) were synthesized with disulfide linkages between camptothecin (CPT) and amphiphilic poly(ethylene glycol)-b-poly(ε-caprolactone) (PECL) copolymers. FSC conjugates were proposed to assemble into micelles with a hydrophobic core of PCL segments and CPT and a hydrophilic corona of PEG segments. The addition of hexadecanol during micelle formation (FSC-16) was proposed to modulate the interactions of hydrophobic segments in micelles and enhance the reductive sensitivity. FSC-16 micelles were obtained with critical micelle concentration of around 2 µg/mL and an average size of around 200 nm, and the conjugated CPT was rapidly released out in response to glutathione. The reductive sensitivity was also demonstrated with respect to the changes of micelle size and morphologies as well as the fluorescent intensity of pyrene loaded in micelles. Benefiting from the FA receptor-mediated uptake and the reduction-sensitive release of CPT, significant cytotoxicity and cell apoptosis were identified for FSC-16 micelles against SKOV-3 cells with strong expressions of FA receptors. Flow cytometry and confocal laser scanning microscopy analyses demonstrated that CPT was distributed into nuclei after cellular uptake and intracellular release from FSC-16 micelles. Thus, the FA-decorated and reduction-sensitive micelles assembled from polymer-drug conjugates show advantages in inhibiting premature release during circulation, enhancing cellular uptake at the tumor tissues, and promoting intracellular release and nuclei location of the active moieties.


Assuntos
Camptotecina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Lactonas/química , Micelas , Neoplasias Ovarianas/tratamento farmacológico , Polietilenoglicóis/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacocinética , Sobrevivência Celular , Relação Dose-Resposta a Droga , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Neoplasias Ovarianas/patologia , Propriedades de Superfície , Distribuição Tecidual , Células Tumorais Cultivadas
2.
Int J Biol Macromol ; 278(Pt 4): 135194, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39256120

RESUMO

The antimicrobial and pro-healing properties remain critical clinical objectives for skin wound management. However, the escalating problem of antibiotic overuse and the corresponding rise in bacterial resistance necessitates an urgent shift towards an antibiotic-free approach to antibacterial treatment. The quest for antimicrobial efficacy while accelerating wound healing without antibiotic treatment have emerged as innovative strategies in skin wound treatment. Here, a dual-function hydrogel with antimicrobial and enhanced tissue-healing properties was developed by utilizing cyclodextrin, ferrocene, polyethyleneimine (PEI), and Bletilla striata polysaccharide (BSP), through multiple non-covalent interactions, which can intelligently release BSP by recognizing the wound inflammatory microenvironment through the cyclodextrin-ferrocene unit. Moreover, the porosity (65 % - 85 %), Young's modulus (400 KPa - 140 KPa), and DPPH scavenge rate (18 % - 40 %) of the hydrogel are modulated by varying the BSP content. The hydrogel exhibits outstanding antibacterial properties (98.3 % reduction of Escherichia coli observed after exposure to HTFC@BSP-20 for 24 h) and favorable biocompatibility. Furthermore, in a rat full-thickness skin wound model, the dual-function hydrogel significantly accelerates wound healing, increased CD31 expression promotes vascular regeneration, reduced TNF-α express and inhibited the inflammation. This multifunctional ROS responsive hydrogel provides a new perspective for antibiotics-free treatment of skin injuries.


Assuntos
Antibacterianos , Bandagens , Hidrogéis , Polissacarídeos , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Inflamação/tratamento farmacológico , Orchidaceae/química , Escherichia coli/efeitos dos fármacos , Humanos , Pele/efeitos dos fármacos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Ratos Sprague-Dawley , Masculino , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Metalocenos
3.
J Colloid Interface Sci ; 678(Pt A): 77-87, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39180850

RESUMO

Carbon dots have shown a broad application prospect in the fields of sensing and detection, biological imaging, and optoelectronic devices. However, it is still challenging to adopt a simple and green synthesis route and to develop new precursor systems to prepare full-color luminescent carbon dots. This study proposes a mechanism for fine regulation of carbon dot fluorescence spectra based on surface states of CN, COC, and OH, among which CN play a major role in long wavelength emission while COC and OH are responsible for the blue shift of emission wavelength. Using 4,4-bipyridine and p-phenylenediamine as precursors in safe and environmentally friendly glycol and water as solvents for the first time, the fine spectral carbon dots with full spectrum luminescence from purple (441 nm) to red (627 nm) were successfully synthesized by simply changing the composition of the reaction solvent and using a short reaction time. Compared with other reports on regulating polychromatic carbon dots, our method is more refined and has a wider distribution of luminescent colors. In addition, the obtained carbon dots based on such surface state luminescence mechanism have shown good application prospects in specific detection of Fe3+and cell labeling.

4.
Regen Biomater ; 11: rbae105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238613

RESUMO

Antibiotic resistance poses a huge threat to public health, which has increased the difficulty and transmission of disease treatment, as well as the burden and cost of medical institutions. In response to the current problems and challenges in inflammation control and treatment of bacterial infected wounds, inspired by antibacterial mechanisms based on active elements such as N, S, Cu and tannic acid (TA), a highly efficient multifunctional carbon quantum dot platform was proposed in this study and constructed through their special assembly in a solvothermal reaction system for the treatment of infected wounds. By introducing active elements such as N, S and Cu, this carbon quantum dot platform is endowed with antibacterial properties, while also achieving good angiogenesis promoting performance through the use of ion Cu. Meanwhile, the good antioxidant activity of TA (one of the precursors used) enables this platform to have better immunomodulatory performance in vivo. The research results on the treatment of bacterial infection models indicate that the multifunctional carbon quantum dots obtained can accelerate the healing of infected wounds by inhibiting bacterial infection, regulating immunoreaction, accelerating collagen deposition and promoting angiogenesis. This multifunctional carbon quantum dot platform shows good clinical application prospects in treating bacterial infected wounds. Additionally, the fluorescence characteristics of such carbon dots can be expected to realize visual therapy in the future.

5.
Int J Pharm ; 648: 123607, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967688

RESUMO

Oral ulcers are a common inflammatory mucosal ulcer, and the moist and dynamic environment in the oral cavity makes topical pharmacological treatment of oral ulcers challenging. Herein, oral ulcer tissue adhesion nanoparticles were prepared by using esterification reaction between polyglutamic acid and tannic acid, and at the same time doxycycline hydrochloride was loaded into the nanoparticles. The obtained slow drug release effect of the drug-loaded nanoparticles reduced the toxicity of the drug, and by penetrating into the fine crevice region of the wound tissue and adhering to it, they could in-situ release the carried drug more effectively and thus have shown significant antibacterial effects. In addition, tannic acid in the system conferred adhesion, antioxidant and immune regulation activities to the nanocarriers. A rat oral ulcer model based on fluorescent labeling was established to investigate the retention of nanoparticles at the ulcer, and the results showed that the retention rate of drug-loaded nanoparticles at the ulcer was 17 times higher than that of pure drug. Due to the antibacterial and immune regulation effects of the drug-loaded nanoparticles, the healing of oral ulcer wounds was greatly accelerated. Such application of doxycycline hydrochloride loaded polyglutamic acid/tannic acid nanoparticles is a novel and effective treatment strategy for oral ulcer.


Assuntos
Nanopartículas , Úlceras Orais , Ratos , Animais , Úlceras Orais/tratamento farmacológico , Doxiciclina/farmacologia , Úlcera/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas , Ácido Poliglutâmico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Taninos
6.
Adv Healthc Mater ; 12(29): e2301560, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548628

RESUMO

The application of most hydrogel bio-adhesives is greatly limited due to their high swelling, low underwater adhesion, and single function. Herein, a spatial multi-level physical-chemical and bio-inspired in-situ bonding strategy is proposed, to develop a multifunctional hydrogel bio-glue using polyglutamic acid (PGA), tyramine hydrochloride (TYR), and tannic acid (TA) as precursors and 4-(4,6-dimethoxytriazine-2-yl) -4-methylmorpholine hydrochloride(DMTMM) as condensation agent, which is used for tissue adhesion, hemostasis and repair. By introducing TYR and TA into the PGA chain, it is demonstrated that not only can the strong adhesion of bio-glue to the surface of various fresh tissues and wet materials be realized through the synergistic effect of spatial multi-level physical and chemical bonding, but also this glue can be endowed with the functions of anti-oxidation and hemostasis. The excellent performance of such bio-glue in the repair of the wound, liver, and cartilage is achieved, showing a great potential in clinical application for such bio-glue. This study will open up a brand-new avenue for the development of multifunctional hydrogel biological adhesive.


Assuntos
Adesivos , Adesivos Teciduais , Humanos , Hidrogéis , Hemostasia , Aderências Teciduais , Taninos
7.
Research (Wash D C) ; 6: 0101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040295

RESUMO

The durability of the resin-dentin bonding interface is a key issue in clinical esthetic dentistry. Inspired by the extraordinary bioadhesive properties of marine mussels in a wet environment, we designed and synthetized N-2-(3,4-dihydroxylphenyl) acrylamide (DAA) according to the functional domain of mussel adhesive proteins. DAA's properties of collagen cross-linking, collagenase inhibition, inducing collagen mineralization in vitro, and as a novel prime monomer for clinical dentin adhesion use, its optimal parameters, and effect on the adhesive longevity and the bonding interface's integrity and mineralization, were evaluated in vitro and in vivo. The results showed that oxide DAA can inhibit the activity of collagenase and cross collagen fibers to improve the anti-enzymatic hydrolysis of collagen fibers and induce intrafibrillar and interfibrillar collagen mineralization. As a primer used in the etch-rinse tooth adhesive system, oxide DAA can improve the durability and integrity of the bonding interface by anti-degradation and mineralization of the exposed collagen matrix. Oxidized DAA (OX-DAA) is a promising primer for improving dentin durability; using 5% OX-DAA ethanol solution and treating the etched dentin surface for 30 s is the optimal choice when used as a primer in the etch-rinse tooth adhesive system.

8.
Pharm Res ; 29(8): 2167-79, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22477071

RESUMO

PURPOSE: Biodegradable polymers containing acid-labile segments and galactose grafts were formulated into nanoparticles in current study, and enhanced cellular uptake and subcellular distribution were clarified. METHODS: Quantum dots (QDs) was utilized as an imaging agent and a model of bioactive substances, and entrapped into nanoparticles of around 200 nm through a nanoprecipitation process. RESULTS: The acid-labile characteristics of QDs-loaded nanoparticles were approved by the hemolysis capability, the degradation behaviors of matrix polymers, and the fluorescence decay of entrapped QDs after incubation into buffer solutions of different pH values. The galactose grafts increased the acid-lability, due to the hydrophilic moieties on the acid-labile segments, and enhanced uptake efficiency of over 50 % was found after 4 h incubation with HepG2 cells, due to the galactose-receptor mediated endocytosis. The acid-lability led to an efficient endosomal escape of QDs-loaded nanoparticles into cytoplasm. CONCLUSIONS: The integration of acid-lability, targeting effect, and full biodegradable backbone into nanoparticle matrices constitutes a promising platform for intracellular delivery of bioactive substances for disease diagnosis, imaging and treatment.


Assuntos
Galactose/química , Nanopartículas/análise , Pontos Quânticos , Ácidos/química , Linhagem Celular Tumoral , Endocitose , Eritrócitos/citologia , Galactose/metabolismo , Hemólise , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Nanopartículas/ultraestrutura
9.
Front Bioeng Biotechnol ; 10: 874419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356777

RESUMO

In this study, a sulfur-mediated polycarbonate polyurethane (PCU-SS) is developed by mimicking the catalyzing ability of glutathione peroxidase (GPx) on nitric oxide (NO) in the human body. The PCU-SS is endowed with the capability to produce NO based on disulfide bonds, which could strongly improve the biocompatibility of the materials. The characterization results indicate that PCU-SS could not only decrease the adhesion of platelets but also enhance the capability of anti-thrombus. Moreover, it is shown that PCU-SS has a good compatibility with endothelial cells (ECs), while has a marked inhibition capacity of the proliferation of smooth muscle cells (SMCs) and macrophages (MA). Meanwhile, the result of animal implantation experiments further demonstrates the good abilities of PCU-SS on anti-inflammation, anti-thrombus, and anti-hyperplasia. Our results offer a novel strategy for the modification of blood-contacting materials based on disulfide bonds. It is expected that the PCU-SS could shed new light on biocompatibility improvement of cardiovascular stents.

10.
Regen Biomater ; 9: rbac068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267153

RESUMO

Magnesium and its alloys have been widely studied as absorbable coronary stent materials. However, the rapid corrosion rate in the intravascular environment inhibits the application of magnesium-based stents. In order to endow magnesium-based stent with appropriate degradation rate and biocompatibility, a hydrophobic layer was constructed by in situ cyclic grafting 4,4'-diphenylmethane diisocyanate and aminopropyl-terminated polydimethylsiloxane on pure magnesium. SEM-EDS, X-ray photoelectron spectroscopy and water contact angle were detected to analyze the chemical composition of the layer. The amino groups were confirmed to be introduced on the surface which provide a platform for subsequent modification. The contact angle value of the modified surface is 132.1°, indicating a hydrophilic surface. The electrochemical measurements and immersion tests demonstrated that the hydrophobic layer significantly improved the anti-corrosion ability of the substrate. Besides, the biocompatibility of the hydrophobic surface was examined by platelet adhesion, cytocompatibility in vitro and subcutaneous implantation in vivo. Immunological and histological results indicated that the hydrophobic layer had excellent biocompatibility. Therefore, the presented study might be a promising method for the surface modification of biomedical magnesium-based stent.

11.
Front Bioeng Biotechnol ; 10: 940172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875490

RESUMO

Magnesium (Mg)-based materials are considered as potential materials for biodegradable vascular stents, and some Mg-based stents have obtained regulatory approval. However, the development and application of Mg-based stents are still restricted by the rapid degradation rate of Mg and its alloys. In order to screen out the desirable Mg-based materials for stents, the degradation behavior still needs further systematic study, especially the degradation behavior under the action of near-physiological fluid. Currently, the commonly used Mg-based vascular stent materials include pure Mg, AZ31, and WE43. In this study, we systematically evaluated their corrosion behaviors in a dynamic environment and studied the effect of their degradation products on the behavior of vascular cells. The results revealed that the corrosion rate of different Mg-based materials was related to the composition of the elements. The dynamic environment accelerated the corrosion of Mg-based materials. All the same, AZ31 still shows good corrosion resistance. The effect of corrosive products on vascular cells was beneficial to re-endothelialization and inhibition of smooth muscle cell proliferation at the implantation site of vascular stent materials.

12.
Research (Wash D C) ; 2022: 9795682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36349335

RESUMO

Many polyurethanes (PUs) are blood-contacting materials due to their good mechanical properties, fatigue resistance, cytocompatibility, biosafety, and relatively good hemocompatibility. Further functionalization of the PUs using chemical synthetic methods is especially attractive for expanding their applications. Herein, a series of catechol functionalized PU (C-PU-PTMEG) elastomers containing variable molecular weight of polytetramethylene ether glycol (PTMEG) soft segment are reported by stepwise polymerization and further introduction of catechol. Tailoring the molecular weight of PTMEG fragment enables a regulable catechol content, mobility of the chain segment, hydrogen bond and microphase separation of the C-PU-PTMEG elastomers, thus offering tunability of mechanical strength (such as breaking strength from 1.3 MPa to 5.7 MPa), adhesion, self-healing efficiency (from 14.9% to 96.7% within 2 hours), anticoagulant, antioxidation, anti-inflammatory properties and cellular growth behavior. As cardiovascular stent coatings, the C-PU-PTMEGs demonstrate enough flexibility to withstand deformation during the balloon dilation procedure. Of special importance is that the C-PU-PTMEG-coated surfaces show the ability to rapidly scavenge free radicals to maintain normal growth of endothelial cells, inhibit smooth muscle cell proliferation, mediate inflammatory response, and reduce thrombus formation. With the universality of surface adhesion and tunable multifunctionality, these novel C-PU-PTMEG elastomers should find potential usage in artificial heart valves and surface engineering of stents.

13.
ACS Appl Mater Interfaces ; 13(30): 35431-35443, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34304556

RESUMO

Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.


Assuntos
Stents Farmacológicos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Catequina/administração & dosagem , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Reestenose Coronária/prevenção & controle , Cistamina/administração & dosagem , Cistamina/química , Liberação Controlada de Fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Quinolinas/administração & dosagem , Quinolinas/química , Quinolinas/farmacologia , Coelhos , Ratos Sprague-Dawley , Aço Inoxidável/química
14.
ACS Appl Mater Interfaces ; 13(33): 39142-39156, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433244

RESUMO

The reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues. In the present study completed in vitro, N-2-(3,4-dihydroxyphenyl) acrylamide (DAA) is used to bind and cross-link collagen molecules and further stabilize the self-assembled collagen fibers. The DAA-collagen complex provides more affinity with calcium and phosphate ions, which can reduce the calcium phosphate/collagen interfacial energy to promote hydroxyapatite (HA) nucleation and accelerate the rate of collagen fiber mineralization. Besides inducing intrafibrillar mineralization, the DAA-collagen complex mineralization template can realize interfibrillar mineralization with the c-axis of the HA crystal on the surface of collagen fibers and between fibers that are parallel to the long axis of collagen fibers. The DAA-collagen complex, as a new type of mineralization template, may provide a new collagen mineralization strategy to produce a mineralized scaffold material for tissue engineering or develop bone-like materials.


Assuntos
Acrilamida/química , Materiais Biomiméticos/química , Colágeno/química , Dopamina/química , Osso e Ossos , Cálcio/química , Cálcio/metabolismo , Fosfatos de Cálcio/química , Reagentes de Ligações Cruzadas/química , Cristalização , Durapatita/química , Durapatita/metabolismo , Matriz Extracelular/metabolismo , Humanos , Simulação de Dinâmica Molecular , Polimerização , Medicina Regenerativa , Propriedades de Superfície , Engenharia Tecidual
15.
Mater Sci Eng C Mater Biol Appl ; 116: 111237, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806322

RESUMO

As an important class of biomaterials,bionics inspired materials has been widely used in creating extracorporeal and implantable medical devices. However, specific service environment is often faced with multiple requirements rather than single function. Herein, we designed a phospholipid-based multifunctional coating with phospholipids-based polymers, type I collagen (Col-I) and Arg-Glu-Asp-Val (REDV) peptide, via layer-by-layer assembly. The successful synthesis of the polymers and the coating is proved by a series of characterization methods including Fourier transforming infrared spectra (FTIR), proton nuclear magnetic resonance (1H NMR), ultraviolet-visible spectra (UV) and X-ray photoelectron spectroscopy (XPS), while the assembly process and quality change of the coating were monitored via quartz crystal microbalance (QCM). Besides, hydrophilicity and roughness of this coating was analyzed via water contact angle (WCA) and atomic force microscope (AFM), respectively. Finally, results from platelet adhesion, activation assay, smooth muscle cells (SMCs) and endothelial cells (ECs) cultures indicated that the multifunctional coating could strongly inhibit platelet adhesion and SMCs proliferation, hence provide practical application of the coating with good biocompatibility, especially the anticoagulant property and cell compatibility. It is expected that this coating may be used in blood-contacting fields such as cardiovascular stent or other devices in the future.


Assuntos
Células Endoteliais , Fosfolipídeos , Materiais Biocompatíveis , Adesividade Plaquetária , Propriedades de Superfície
16.
Regen Biomater ; 7(5): 491-504, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33149938

RESUMO

Polyurethanes are widely used in interventional devices due to the excellent physicochemical property. However, non-specific adhesion and severe inflammatory response of ordinary polyurethanes may lead to severe complications of intravenous devices. Herein, a novel phospholipid-based polycarbonate urethanes (PCUs) were developed via two-step solution polymerization by direct synthesis based on functional raw materials. Furthermore, PCUs were coated on biomedical metal sheets to construct biomimetic anti-fouling surface. The results of stress-strain curves exhibited excellent tensile properties of PCUs films. Differential scanning calorimetry results indicated that the microphase separation of such PCUs polymers could be well regulated by adjusting the formulation of chain extender, leading to different biological response. In vitro blood compatibility tests including bovine serum albumin adsorption, fibrinogen adsorption and denaturation, platelet adhesion and whole-blood experiment showed superior performance in inhibition non-specific adhesion of PCUs samples. Endothelial cells and smooth muscle cells culture tests further revealed a good anti-cell adhesion ability. Finally, animal experiments including ex vivo blood circulation and subcutaneous inflammation animal experiments indicated a strong ability in anti-thrombosis and histocompatibility. These results high light the strong anti-adhesion property of phospholipid-based PCUs films, which may be applied to the blood-contacting implants such as intravenous catheter or antithrombotic surface in the future.

17.
ACS Biomater Sci Eng ; 5(9): 4272-4284, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33417783

RESUMO

This study is aimed to investigate the relationship of the mechanism and the effect of polyphenol derivatives cross-linking collagen with polyphenol molecular structural complexity and reaction conditions of polyphenols with collagen and to present a reference for cross-linker selection. Three kinds of polyphenols were selected to cross-link collagen under nonoxidized and oxidized conditions in vitro. These polyphenols included tannic acid, which represents the most complex stereo structure and the highest number of phenolic hydroxyl groups; epigallocatechin gallate, which represents a moderately complex structure and contains fewer phenolic hydroxyl groups than tannic acid; and N-2-(3,4-dihydroxylphenyl) ethyl acrylamide, which represents only one hydroxyl phenol group. Particle size analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, attenuated total reflection Fourier transform infrared spectroscopy, and cross-linking degree analysis were conducted. Mechanical properties, thermal stability, swelling properties, hydrophilicity, and antienzymolysis properties were also determined. Results showed that all polyphenol derivatives cross-linked collagen mainly by noncovalent bonding under acidic nonoxidized conditions and by covalent bonding under alkaline-oxidized conditions. In general, the modification effect of polyphenol on collagen was related to its molecular complexity and the number of its phenolic hydroxyls. Several phenolic hydroxyls in the polyphenol derivative caused a good modification effect on collagen, especially under acidic nonoxidized conditions. Under alkaline conditions, each polyphenol was oxidized, resulting in improved cross-linking strength by covalent bonding compared to that under acidic nonoxidized condition via noncovalent bonding. The selection of cross-linkers and cross-linking conditions should be based on the purpose of collagen modification consistent with the effect of cross-linking.

18.
J Biomater Sci Polym Ed ; 29(14): 1701-1715, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29847213

RESUMO

Abstracts Here we report the anticoagulant property of Sulfonated Silk Fibroin (SSF) which was improved by sulfonation method. Chlorosulfonic acid was applied to modify the Silk Fibroin (SF) anticoagulant property by the preparation of the SSF. The SSF was prepared in the new technology that 50 °C, 0.2 g SF/ml chlorosulfonic acid and 15 h were optimized with the reaction temperature, special concentration ratio of the SF to the chlorosulfonic acid and the certain reaction time, respectively. Then the SF reaction solution was dialyzed, and freeze-dried to form the SSF. The different properties of the SF and the SSF have been revealed by Fourier Transform Infrared spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), X-ray Photoelectron Spectrometer (XPS), Gel Permeation Chromatography (GPC), X-ray Diffraction (XRD), Activated Partial Thromboplastin Time (APTT) etc. That the sulfonic acid groups were successfully induced into the SF molecular chains has also been verified. The SSF possessed the excellent performance on the APTT value, and it can be slowly released from the Poly(epsilon-caprolactone) (PCL) composite film. In conclusion, the SSF is the novel product modified by the chlorosulfonic acid directly, and it possesses the good anti-coagulation, resulting in that it can become one of candidates of anti-coagulation materials.


Assuntos
Anticoagulantes/química , Portadores de Fármacos/química , Fibroínas/química , Poliésteres/química , Ácidos Sulfônicos/química , Alicerces Teciduais/química , Anticoagulantes/administração & dosagem , Materiais Biocompatíveis/química , Tempo de Tromboplastina Parcial , Propriedades de Superfície
19.
RSC Adv ; 8(37): 20836-20850, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542362

RESUMO

To regulate the behaviors and functions of endothelial cells (ECs) on the biomaterials on titanium (Ti), a biomimetic micropattern (ridge/groove: 25/25 µm) of polymer of 2-methacryloyloxyethyl phosphorylcholine (polyMPC) and Gly-Arg-Glu-Asp-Val-Tyr (GREDVY) was fabricated. PMMPC (monomer contain MPC and methacrylic acid (MA)) containing carboxyl groups was chosen, and PMMPC was cross-linked with hexamethylene diamine through condensation reaction of amino and carboxyl. Simultaneously, the carboxyl groups of cross-linked PMMPC (PMMPC-HD) can react with amino groups of polydopamine which can adhered on many materials firmly. GREDVY was immobilized on polydopamine but not on PMMPC-HD because amino and carboxyl groups can react with catechol and amino groups of polydopamine. IR and 1H NMR demonstrated that PMMPC-HD was successfully synthesized. And the QCM-D (quartz crystal microbalance with dissipation) and IR approved that PMMPC-HD and GREDVY can be immobilized on polydopamine (PDA). Platelet adhesion and whole blood adhesion on micropattern modificated with PMMPC and GREDVY (Ti-PDA-M/R(P)) showed better hemocompatibility than other samples. Endothelial cells were regulated in the direction of micropattern showing elongated ECs were closer to a healthy, athero-protective phenotype than ECs cultured in vitro without micropattern. NO and PGI2 release were upregulated. Simultaneously the number of SMCs on Ti-PDA-M/R(P) was the smaller that of other samples, which demonstrated that the Ti-PDA-M/R(P) had property of inhibiting SMCs proliferation to a certain extent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa