Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2217019121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547062

RESUMO

Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission. This force-induced fission involves DRP1/MFF and endoplasmic reticulum tubule wrapping. It redistributes mitochondrial DNA, producing mitochondrial fragments with or without mitochondrial DNA for different fates. Moreover, tensile force can decouple outer and inner mitochondrial membranes, pulling out matrix-excluded tubule segments. Subsequent tail-autotomy fission separates the matrix-excluded tubule segments into matrix-excluded mitochondrial-derived vesicles (MDVs) which recruit Parkin and LC3B, indicating the unique role of tail-autotomy fission in segregating only outer membrane components for mitophagy. Sustained force promotes fission and MDV biogenesis more effectively than transient one. Our results uncover a mechanistically and functionally distinct type of fission and unveil the role of tensile forces in modulating fission and MDV biogenesis for quality control, underscoring the heterogeneity of fission and mechanoregulation of mitochondrial dynamics.


Assuntos
Proteínas de Membrana , Dinâmica Mitocondrial , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mitocôndrias/genética , DNA Mitocondrial , Controle de Qualidade , Dinaminas/genética
2.
BMC Genomics ; 25(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166541

RESUMO

BACKGROUND: There has been a significant surge in the global prevalence of diabetes mellitus (DM), which increases the susceptibility of individuals to ovarian cancer (OC). However, the relationship between DM and OC remains largely unexplored. The objective of this study is to provide preliminary insights into the shared molecular regulatory mechanisms and potential biomarkers between DM and OC. METHODS: Multiple datasets from the GEO database were utilized for bioinformatics analysis. Single cell datasets from the GEO database were analysed. Subsequently, immune cell infiltration analysis was performed on mRNA expression data. The intersection of these datasets yielded a set of common genes associated with both OC and DM. Using these overlapping genes and Cytoscape, a protein‒protein interaction (PPI) network was constructed, and 10 core targets were selected. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then conducted on these core targets. Additionally, advanced bioinformatics analyses were conducted to construct a TF-mRNA-miRNA coregulatory network based on identified core targets. Furthermore, immunohistochemistry staining (IHC) and real-time quantitative PCR (RT-qPCR) were employed for the validation of the expression and biological functions of core proteins, including HSPAA1, HSPA8, SOD1, and transcription factors SREBF2 and GTAT2, in ovarian tumors. RESULTS: The immune cell infiltration analysis based on mRNA expression data for both DM and OC, as well as analysis using single-cell datasets, reveals significant differences in mononuclear cell levels. By intersecting the single-cell datasets, a total of 119 targets related to mononuclear cells in both OC and DM were identified. PPI network analysis further identified 10 hub genesincludingHSP90AA1, HSPA8, SNRPD2, UBA52, SOD1, RPL13A, RPSA, ITGAM, PPP1CC, and PSMA5, as potential targets of OC and DM. Enrichment analysis indicated that these genes are primarily associated with neutrophil degranulation, GDP-dissociation inhibitor activity, and the IL-17 signaling pathway, suggesting their involvement in the regulation of the tumor microenvironment. Furthermore, the TF-gene and miRNA-gene regulatory networks were validated using NetworkAnalyst. The identified TFs included SREBF2, GATA2, and SRF, while the miRNAs included miR-320a, miR-378a-3p, and miR-26a-5p. Simultaneously, IHC and RT-qPCR reveal differential expression of core targets in ovarian tumors after the onset of diabetes. RT-qPCR further revealed that SREBF2 and GATA2 may influence the expression of core proteins, including HSP90AA1, HSPA8, and SOD1. CONCLUSION: This study revealed the shared gene interaction network between OC and DM and predicted the TFs and miRNAs associated with core genes in monocytes. Our research findings contribute to identifying potential biological mechanisms underlying the relationship between OC and DM.


Assuntos
Diabetes Mellitus , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Superóxido Dismutase-1 , MicroRNAs/genética , Neoplasias Ovarianas/genética , Biologia Computacional , RNA Mensageiro , Redes Reguladoras de Genes , Microambiente Tumoral/genética
3.
J Am Chem Soc ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302880

RESUMO

Acetylene hydrochlorination is a vital industrial process for the manufacture of vinyl chloride monomer (VCM). Current thermocatalytic acetylene hydrochlorination requires toxic mercury-based or costly noble metal-based catalysts, high temperatures (≥180 °C) and excessive gaseous HCl. Here, we report a room-temperature photocatalytic acetylene hydrochlorination strategy involving concurrent coupling of electron-driven proton reduction (*H) and hole-driven chloride oxidation (*Cl) on photocatalyst surfaces. Under simulated solar light illumination, the developed noble-metal-free g-C3N4/BiOCl photocatalysts show a considerably high VCM production rate of 1198.6 µmol g-1 h-1 and a high VCM selectivity of 95% in a 0.1 M HCl aqueous solution. Even in chloride-rich natural seawater and acidified natural seawater, the VCM production rates of g-C3N4/BiOCl photocatalysts are up to 170.3 µmol g-1 h-1 with a VCM selectivity of 80.4% and 1247.7 µmol g-1 h-1 with a VCM selectivity of 94.7%, respectively. Moreover, with sunlight irradiation and acidified natural seawater, the g-C3N4/BiOCl photocatalysts in a large-scale photosystem retain outstanding acetylene hydrochlorination performance over 10 days of operation. The radical scavenging, in situ photochemical Fourier transform infrared spectroscopy, theoretical simulations, and control experiments reveal that active *Cl and *H play key roles in photocatalytic acetylene hydrochlorination via a possible reaction pathway of C2H2 → *C2H2 → *C2H2Cl → *C2H3Cl → C2H3Cl. With respect to sustainability and low cost, this photocatalytic acetylene hydrochlorination offers excellent advantages over conventional thermocatalytic hydrochlorination technologies.

4.
Anal Chem ; 96(3): 1073-1083, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206976

RESUMO

The spatial distribution of lipidomes in tissues is of great importance in studies of living processes, diseases, and therapies. Mass spectrometry imaging (MSI) has become a critical technique for spatial lipidomics. However, MSI of low-abundance or poorly ionizable lipids is still challenging because of the ion suppression from high-abundance lipids. Here, a metal-organic framework (MOF) Zr6O4(OH)4(1,3,5-Tris(4-carboxyphenyl) benzene)2(triflate)6(Zr6OTf-BTB) was prepared and used for selective on-tissue adsorption of phospholipids to reduce ion suppression from them to poorly ionizable lipids. The results show that Zr6OTf-BTB with strong Lewis acidic sites and a large specific surface area (647.9 m2·g-1) could selectively adsorb phospholipids under 1% FA-MeOH. Adsorption efficiencies of phospholipids are 88.4-144.9 times higher than those of other neutral lipids. Moreover, the adsorption capacity and the adsorption kinetic rate constant of the new material to phospholipids are higher than those of Zr6-BTB (242.72 vs 73.96 mg·g-1, 0.0442 vs 0.0220 g·mg-1·min-1). A Zr6OTf-BTB sheet was prepared by a lamination technique for on-tissue phospholipid adsorption from brain tissue. Then, the tissue section on the Zr6OTf-BTB sheet was directly imaged via ambient liquid extraction-MSI with 1% FA-MeOH as the sampling solvent. The results showed that phospholipids could be 100% removed directly on tissue, and the detection coverage of the Zr6OTf-BTB-enhanced MSI method to ceramides (Cers) and hexosylceramides (HexCers) was increased by 5-26 times compared with direct tissue MSI (26 vs 1 and 17 vs 3). The new method provides an efficient and convenient way to eliminate the ion suppression from phospholipids in MSI, largely improving the detection coverage of low-abundance and poorly ionizable lipids.


Assuntos
Estruturas Metalorgânicas , Espectrometria de Massas/métodos , Fosfolipídeos , Diagnóstico por Imagem , Encéfalo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
5.
Small ; 20(31): e2311930, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38433391

RESUMO

Human health and the environment face significant challenges of air pollution, which is predominantly caused by PM2.5 or PM10 particles. Existing control methods often require elevated energy consumption or bulky high-voltage electrical equipment. To overcome these limitations, a self-powered, convenient, and compact direct current high-voltage triboelectric nanogenerator based on triboelectrification and electrostatic breakdown effects is proposed. By optimizing the structure-design of the direct current triboelectric nanogenerator and corresponding output voltage, it can easily achieve an output voltage of over 3 kV with a high charge density of 320 µC m-2. A power management circuit is designed to overcome the influence of third domain self-breakdown, optimize 92.5% amplitude of voltage shake, and raise 5% charge utilization ratio. With a device size as tiny as 2.25 cm3, it can continuously drive carbon nanowires to generate negative ions that settle dust within 300 s. This compact, simple, efficient, and safe high-voltage direct current triboelectric nanogenerator represents a promising sustainable solution. It offers efficient dust mitigation, fostering cleaner environments, and enhancing overall health.

6.
J Opt Soc Am A Opt Image Sci Vis ; 41(2): 157-164, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437328

RESUMO

Feature point matching is one of the fundamental tasks in binocular vision. It directly affects the accuracy and quality of 3D reconstruction. This study proposes a directional region-based feature point matching algorithm based on the SURF algorithm to improve the accuracy of feature point matching. First, same-name points are selected as the matching reference points in the left and right images. Then, the SURF algorithm is used to extract feature points and construct the SURF feature point descriptors. During the matching process, the location relationship between the query feature point and the reference point in the left image is directed to determine the corresponding matching region in the right image. Then, the matching is completed within this region based on Euclidean distance. Finally, the grid-based motion statistics algorithm is used to eliminate mismatches. Experimental results show that the proposed algorithm can substantially improve the matching accuracy and the number of valid matched points, particularly in the presence of a large amount of noise and interference. It also exhibits good robustness and stability.

7.
J Nanobiotechnology ; 22(1): 161, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589895

RESUMO

Antibiotic resistance has garnered significant attention due to the scarcity of new antibiotics in development. Protoporphyrin IX (PpIX)-mediated photodynamic therapy shows promise as a novel antibacterial strategy, serving as an alternative to antibiotics. However, the poor solubility of PpIX and its tendency to aggregate greatly hinder its photodynamic efficacy. In this study, we demonstrate that alkylated EDTA derivatives (aEDTA), particularly C14-EDTA, can enhance the solubility of PpIX by facilitating its dispersion in aqueous solutions. The combination of C14-EDTA and PpIX exhibits potent antibacterial activity against Staphylococcus aureus (S. aureus) when exposed to LED light irradiation. Furthermore, this combination effectively eradicates S. aureus biofilms, which are known to be strongly resistant to antibiotics, and demonstrates high therapeutic efficacy in an animal model of infected ulcers. Mechanistic studies reveal that C14-EDTA can disrupt PpIX crystallization, increase bacterial membrane permeability and sequester divalent cations, thereby improving the accumulation of PpIX in bacteria. This, in turn, enhances reactive oxygen species (ROS) production and the antibacterial photodynamic activity. Overall, this effective strategy holds great promise in combating antibiotic-resistant strains.


Assuntos
Fotoquimioterapia , Staphylococcus aureus , Animais , Protoporfirinas/farmacologia , Ácido Edético/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
8.
J Craniofac Surg ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287427

RESUMO

OBJECTIVE: Although certain orbital fractures are associated with specific clinical symptoms, these relationships should be reviewed comprehensively. The optimal choice between manual preformed mesh implants (MPIs) and patient-specific mesh implants (PSIs) for orbital reconstruction remains undetermined due to inconclusive evidence regarding their effectiveness. METHODS: This retrospective study investigated 280 patients with unilateral orbital fractures to explore the correlation between clinical ocular symptoms, including diplopia, enophthalmos, limitation of ocular movement, blindness, and the specific type of orbital fracture. The effects on orbital volume (OV) and orbital volume ratio (OVR) of MPI and PSI with and without the use of navigation were also evaluated in this study. Patients were categorized into 4 groups: MPI, PSI, navigation-assisted MPI, and navigation-assisted PSI. After this categorization, alterations in OV and OVR were analyzed before and after surgical intervention. RESULTS: Significant correlations were observed between the orbital fracture type and diplopia, enophthalmos, and limitation of ocular movement (P < 0.05). Patients in the MPI group exhibited a notable difference in the postoperative OV between the injured and normal sides (P < 0.05), but no statistically significant difference was found in the postoperative OV between the injured and normal sides among the patients in the other 3 groups (P > 0.05). Moreover, the MPI group demonstrated significantly higher postoperative OVR than the other groups (P < 0.05). Notably, PSI remained effective with or without navigation, MPI combined with navigation technology achieved a reconstruction quality similar to that of PSI by rectifying positioning errors during surgery. CONCLUSION: The authors found significant correlations (P < 0.05) between orbital fracture type and diplopia, enophthalmos, and limitations of ocular movement. Patient-specific mesh implant plays an important role in orbital reconstruction. It is also a good method for reconstructing orbital fractures using MPI assisted by navigation technology.

9.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612541

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A (CoA) bind to the human GPAT isoform GPAT4 via molecular dynamics simulations (MD). As no experimentally resolved GPAT4 structure is available, the AlphaFold model is employed to construct the GPAT4-substrate complex model. Using another isoform, GPAT1, we demonstrate that once the ligand binding is properly addressed, the AlphaFold complex model can deliver similar results to the experimentally resolved structure in MD simulations. Following the validated protocol of complex construction, we perform MD simulations using the GPAT4-substrate complex. Our simulations reveal that R427 is an important residue in recognizing G3P via a stable salt bridge, but its motion can bring the ligand to different binding hotspots on GPAT4. Such high flexibility can be attributed to the flexible region that exists only on GPAT4 and not on GPAT1. Our study reveals the substrate recognition mechanism of GPAT4 and hence paves the way towards designing GPAT4 inhibitors.


Assuntos
Glicerol , Glicerofosfatos , Simulação de Dinâmica Molecular , Humanos , Ligantes , Glicerol-3-Fosfato O-Aciltransferase , Isoformas de Proteínas , Fosfatos
10.
Angew Chem Int Ed Engl ; 63(11): e202318989, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38221223

RESUMO

As bulky pollutants in industrial and agricultural wastewater, nitrate and formaldehyde pose serious threats to the human health and ecosystem. Current purification technologies including chemical and bio-/photo-/electro-chemical methods, are generally high-cost, time-consuming, or energy-intensive. Here, we report a novel formaldehyde-nitrate battery by pairing anodic formaldehyde oxidation with cathodic nitrate reduction, which simultaneously enables wastewater purification, electricity generation, and the production of high-value-added ammonia and formate. As a result, the formaldehyde-nitrate battery remarkably exhibits an open-circuit voltage of 0.75 V, a peak power density of 3.38 mW cm-2 and the yield rates of 32.7 mg h-1 cm-2 for ammonia and 889.4 mg h-1 cm-2 for formate. In a large-scale formaldehyde-nitrate battery (25 cm2 ), 99.9 % of nitrate and 99.8 % of formaldehyde are removed from simulated industrial wastewater and the electricity of 2.03 W⋅h per day is generated. Moreover, the design of such a multi-functional battery is universally applicable to the coupling of NO3 - or NO2 - reduction with various aldehyde oxidization, paving a new avenue for wastewater purification and chemical manufacturing.

11.
Angew Chem Int Ed Engl ; 63(8): e202318967, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38153676

RESUMO

Lithium-mediated electrochemical nitrogen reduction reaction (Li-NRR) completely eschews the competitive hydrogen evolution reaction (HER) occurred in aqueous system, whereas the continuous deposition of lithium readily blocks the active sites and further reduces the reaction kinetics. Herein, we propose an innovative in situ Li migration strategy to realize that Li substitutes Mn sites in λ-MnO2 instead of evolving into the dead Li. Comprehensive characterizations corroborate that the intercalation of Li+ at high voltage breaks the structural integrity of MnO6 octahedron and further triggers unique Jahn-Teller distortions, which promotes the spin state regulation of Mn sites to generate the ameliorative eg orbital configuration and accelerates N≡N bond cleavage via eg -σ and eg -π* interaction. To this end, the resulted cationic disordered LiMnO4 delivers the recorded highest NH3 yield rate of 220 µg h-1 cm-2 and a Faradaic efficiency (FE) 83.80 % in organic electrolyte.

12.
Anal Chem ; 95(46): 16927-16935, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939311

RESUMO

Ambient liquid extraction techniques enable direct mass spectrometry imaging (MSI) under ambient conditions with minimal sample preparation. However, currently an integrated probe for ambient liquid extraction-based MSI with high spatial resolution, high sensitivity, and stability is still lacking. In this work, we developed a new integrated probe made of pulled coaxial capillaries, named pulled flowprobe, and compared it with the previously reported single-probe. Mass transfer kinetics in probes was first investigated. The extraction kinetic curves during probe sampling indicate a narrower and higher peak shape for the pulled flowprobe than single-probe. Computational fluid dynamics analysis reveals that in the pulled flowprobe flow velocities are lower in liquid microjunction and higher in the transferring channels, resulting in higher extraction efficiencies and reduced band diffusion compared with single-probe and other probes with a similar flow route. Results of ambient liquid extraction-based MSI of lipids in rat cerebrum show that signals of low-abundance lipids were 2-5 times higher via a pulled flowprobe than via a single-probe, and 26 more lipid species were detected on brain tissue via a pulled flowprobe than via a single-probe. The stability of MSI with the pulled flowprobe was found to be higher than that with single-probe (averaged relative standard deviation = 18% vs 80%) by imaging a lab-made uniform ink coating. Moreover, in the pulled flowprobe, no retraction of the inner capillary from outer capillary is optimal for both sensitivity and stability. The spatial resolution of the pulled flowprobe (30-40 µm) was measured to be higher than that of a comparable size single-probe by calculation with the "80-20" rule. Finally, the new pulled flowprobe was applied to high-resolution MSI of lipids in the hippocampus, and localization of several lipids to the specific cell layers in the hippocampus region was observed. Thus, this work provides an alternative easily fabricated sampling probe with enhanced sensitivity, stability, and spatial resolution, promoting the use of ambient liquid extraction-based MSI in biological and clinical research.


Assuntos
Diagnóstico por Imagem , Hidrodinâmica , Ratos , Animais , Espectrometria de Massas/métodos , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
13.
Environ Res ; 235: 116663, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451574

RESUMO

As one of the polycyclic aromatic hydrocarbons (PAHs), naphthalene is of serious environmental concern due to its carcinogenicity, persistence and refractory degradation. In this study, a new functional biomaterial based on Burkholderia cepacia (BK) immobilized on reduced graphene oxide (rGO) was prepared, resulting in the removal of 99.0% naphthalene within 48 h. This was better than the 67.3% for free BK and 55.6% for rGO alone. Various characterizations indicated that reduced graphene oxide-Burkholderia cepacia (rGO-BK) was successfully synthesized and secreted non-toxic and degradable surfactants which participated in the degradation of naphthalene. The adsorption kinetics and degradation kinetics conformed best to non-linear pseudo-second-order and pseudo-first-order kinetic models, respectively. Demonstrated in this work is that removing naphthalene by rGO-BK involved both chemically dominated adsorption and biodegradation. As well, GC-MS analysis revealed two things: firstly, that the degraded products of naphthalene were dibutyl phthalate, diethyl phthalate, phthalic acid, and benzoic acid; and secondly, two potentially viable biodegradation pathways of naphthalene by rGO-BK could be proposed. Finally, for practical application experiment, the rGO-BK was exposed to river water samples and generated 99% removal efficiency of naphthalene, so this study offers new insights into biomaterials that can remove naphthalene.


Assuntos
Burkholderia cepacia , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Burkholderia cepacia/metabolismo , Águas Residuárias , Materiais Biocompatíveis/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Adsorção , Poluentes Químicos da Água/química
14.
BMC Genomics ; 23(1): 11, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34983381

RESUMO

BACKGROUND: Oil palm (Elaeis guineensis, Jacq.) is an important vegetable oil-yielding plant. Somatic embryogenesis is a promising method to produce large-scale elite clones to meet the demand for palm oil. The epigenetic mechanisms such as histone modifications have emerged as critical factors during somatic embryogenesis. These histone modifications are associated with the regulation of various genes controlling somatic embryogenesis. To date, none of the information is available on the histone modification gene (HM) family in oil palm. RESULTS: We reported the identification of 109 HM gene family members including 48 HMTs, 27 HDMs, 13 HATs, and 21 HDACs in the oil palm genome. Gene structural and motif analysis of EgHMs showed varied exon-intron organization and with conserved motifs among them. The identified 109 EgHMs were distributed unevenly across 16 chromosomes and displayed tandem duplication in oil palm genome. Furthermore, relative expression analysis showed the differential expressional pattern of 99 candidate EgHM genes at different stages (non-embryogenic, embryogenic, somatic embryo) of somatic embryogenesis process in oil palm, suggesting the EgHMs play vital roles in somatic embryogenesis. Our study laid a foundation to understand the regulatory roles of several EgHM genes during somatic embryogenesis. CONCLUSIONS: A total of 109 histone modification gene family members were identified in the oil palm genome via genome-wide analysis. The present study provides insightful information regarding HM gene's structure, their distribution, duplication in oil palm genome, and also their evolutionary relationship with other HM gene family members in Arabidopsis and rice. Finally, our study provided an essential role of oil palm HM genes during somatic embryogenesis process.


Assuntos
Arecaceae , Proteínas de Plantas , Arecaceae/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Código das Histonas/genética , Óleo de Palmeira , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas
15.
J Am Chem Soc ; 144(5): 2179-2188, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080388

RESUMO

The application of solid-state batteries (SSBs) is challenged by the inherently poor interfacial contact between the solid-state electrolyte (SSE) and the electrodes, typically a metallic lithium anode. Building artificial intermediate nanofilms is effective in tackling this roadblock, but their implementation largely relies on vapor-based techniques such as atomic layer deposition, which are expensive, energy-intensive, and time-consuming due to the monolayer deposited per cycle. Herein, an easy and low-cost wet-chemistry fabrication process is used to engineer the anode/solid electrolyte interface in SSBs with nanoscale precision. This coordination-assisted deposition is initiated with polyacrylate acid as a functional polymer to control the surface reaction, which modulates the distribution and decomposition of metal precursors to reliably form a uniform crack-free and flexible nanofilm of a large variety of metal oxides. For demonstration, artificial Al2O3 interfacial nanofilms were deposited on a ceramic SSE, typically garnet-structured Li6.5La3Zr1.5Ta0.5O12 (LLZT), that led to a significant decrease in the Li/LLZT interfacial resistance (from 2079.5 to 8.4 Ω cm2) as well as extraordinarily long cycle life of the assembled SSBs. This strategy enables the use of a nickel-rich LiNi0.83Co0.07Mn0.1O2 cathode to deliver a reversible capacity of 201.5 mAh g-1 at a considerable loading of 4.8 mg cm-2, featuring performance metrics for an SSB that is competitive with those of traditional Li-ion systems. Our study demonstrates the potential of solution-based routes as an affordable and scalable manufacturing alternative to vapor-based deposition techniques that can accelerate the development of SSBs for practical applications.

16.
Anal Chem ; 94(45): 15729-15737, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36315965

RESUMO

Currently, single-cell lipidomic mass spectrometry (MS) techniques are mostly limited to detection of high-abundance phosphatidylcholines (PCs). Herein, for enhancing the coverage to low-abundance sphingolipids in single-cell analysis, in-tube solid-phase microextraction (SPME) was combined with a single-probe MS system for selective enrichment of sphingolipids during singe-cell sampling. From the results, a lab-made single probe with a 30 µm tip size proved to be able to resolve the axon from the cell body of neuron HT22 in ambient conditions. TiO2 was immobilized onto the inner wall of the transfer capillary of the single-probe device for online selective capture of sphingolipids in ammonia-acetonitrile and rapid desorption in formic acid-methanol. The results showed that the breakthrough volume of the capillary with sample loading flow rate at 500 nL/min was >14 µL. Standard experiments showed that the signals of cerebroside (CB), ceramide (Cer), and sphingomyelin (SM) were largely enhanced after selective capture in the coated capillary, while PCs were totally removed. The reusability (>10 times) and stability of the lab-made TiO2-coated capillary was verified. By introducing the coated capillary into the single-probe MS system, the new system proved to have low detection limits of SM, Cer, and CB (0.007-0.027 µg/mm2) and acceptable linearity (r > 0.98) and repeatability (RSD < 30%). Lipid coverage of the new method to SMs and CBs proved to be largely improved (SM, 21 vs 2; CB, 10 vs 0) with the new method in comparison to conventional single-probe MS without selective capture by ambient analysis of a single spot of rat cerebellum. Finally, the new system was used to perform single-neuron analysis of sphingolipids in the control and lipopolysaccharide (LPS)-treated HT22 with differentiation of the cell body from the axonal synapse. Results showed that 5 sphingolipids had significantly higher concentrations in the synapse than in the cell body, while 3 oxidized sphingolipids had significantly higher levels in the cell body than in the synapse. After LPS treatment, most of the sphingolipids largely decreased and became more accumulated in the synapse, providing new information on LPS-induced neuroinflammation.


Assuntos
Esfingolipídeos , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Corpo Celular , Lipopolissacarídeos , Ceramidas , Esfingomielinas , Sinapses , Neurônios
17.
Anal Chem ; 94(40): 13753-13761, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36173256

RESUMO

Localization of lipidomes and tracking their spatial changes by mass spectrometry imaging (MSI) is critical for the mechanism studies on living process, disease, and therapeutic treatment. However, due to the strong ion suppression in complex biotissue, the imaging coverage for lipids with low polarity or low abundances, such as glycerolipids and sphingolipids, is usually limited. To address this issue, we utilized a porous graphitic carbon (PGC) material to imprint brain tissue sections for selective enrichment of neutral lipids with polar phospholipids removed. Then, the tissue imprint was scanned for desorption by the ambient liquid extraction MSI system. It was found that on the PGC surface, hydrophobic interaction dominates in protic solvents, and polar interaction dominates in aprotic solvents. Accordingly, methanol was selected as the spray solvent for tissue imprinting, and 75% acetonitrile-methanol was selected as the desorption solvent for the ambient liquid extraction MSI system. The results showed that glycerides had high recoveries after the imprinting-desorption process (recovery ∼ 70%) with phospholipids eliminated (recovery < 7%). To increase the transferring efficiencies of lipids from tissue onto PGC, electrospray was used for solvent application during imprinting, and the signals of diglycerides (DGs) in the imprint MSI of brain tissue increased by 2-3 times as compared to those via air spray. Finally, the new imprint MSI approach was applied to the imaging of the rat cerebellum and was compared with direct tissue MSI. The results showed that with imprint MSI, the coverage of DGs, sphingomyelins (SMs), and ceramides was enhanced by 4-5-fold (32 vs 6, 4 vs 1, and 5 vs 0). The ion images showed that with imprint MSI, higher signal intensities and clearer spatial distribution of DGs and SMs were obtained without interference from phosphatidylcholine signals compared with tissue MSI. This new method provides a complementary approach for traditional MSI to address the issues in imaging poorly ionizable or low-abundance lipids.


Assuntos
Grafite , Esfingolipídeos , Acetonitrilas , Animais , Encéfalo/diagnóstico por imagem , Carbono , Ceramidas , Diglicerídeos , Metanol , Fosfatidilcolinas , Porosidade , Ratos , Solventes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esfingomielinas
18.
Small ; 18(24): e2201402, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35560726

RESUMO

As an emerging energy-harvesting technology, the triboelectric nanogenerator (TENG) is considered a powerful driving force toward the new-era of Internet of Things and artificial intelligence, but its output performance is dramatically influenced by environmental humidity. Herein, a direct current TENG (DC-TENG) based on the triboelectrification effect and electrostatic breakdown is reported to address the problem of output attenuation in high humidity environments for the conventional TENGs. It is found that high humidity not only enhances the sliding triboelectrification effect of hydrophobic triboelectric materials, but also promotes the electrostatic breakdown process for DC-TENG, thus contributing to the improvement of DC-TENG output. Furthermore, taking poly(vinyl chloride) film as the friction layer, the effective surface charge density of DC-TENG with microstructure-designed electrode achieves a milestone value of ≈2.97 mC m-2 under 90% relative humidity, which is almost 1.42-fold larger than that under 30% RH. This work not only establishes an effective methodology to boost the output performance of TENG in a high humidity environment, but also establishes a foundation for its practical applications in large-scale energy harvesting.

19.
Opt Express ; 30(2): 864-873, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209266

RESUMO

Image-based target tracking methods rely on continuous image acquisition and post-processing, which will result in low tracking efficiency. To realize real-time tracking of fast moving objects, we propose an image-free target tracking scheme based on the discrete cosine transform and single-pixel detection. Our method avoids calculating all the phase values, so the number of samples can be greatly reduced. Furthermore, complementary modulation is applied to reduce the measurement noise, and background subtraction is applied to enhance the contrast. The results of simulations and experiments demonstrate that the proposed scheme can accomplish the tracking task in a complex background with a sampling ratio of less than 0.59% of the Nyquist-Shannon criterion, thereby significantly reducing the measurement time. The tracking speed can reach 208 fps at a spatial resolution of 128 × 128 pixels with a tracking error of no more than one pixel. This technique provides a new idea for real-time tracking of fast-moving targets.

20.
Phys Chem Chem Phys ; 24(43): 26795-26801, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314530

RESUMO

Quantum interference (QI) has been identified as a promising strategy for designing molecular-scale electronic devices. Heteroatom doping can effectively tailor the local structures and electronic states of intrinsic molecules, and endow them with modified electron transport properties. Herein, the impacts of multiple heteroatom substitution on destructive quantum interference (DQI) have been investigated based on tripodal meta-linked phenyl derivatives. Orbital views based on the Hückel method qualitatively predict the meta-anchored molecules with DQI features, while the introduction of nitrogen atoms can alleviate the suppression of DQI at the Fermi level (EF). This is generally consistent with the movement or even removal of the antiresonance dips in transmission spectra. The substituent on position 2 can raise the antiresonance energy, while the substituent on position 4 or 6 can lower the antiresonance energy. When more than one nitrogen atom is incorporated, the impact of the substitution on positions 4 and 6 can be superimposed and the substitution on positions 2 and 4 can be partly cancelled. The experimental single-molecule conductance for tripodal molecules follows the trend of 0N-3SMe < 1N-3SMe < 3N-3SMe < 2N-3SMe, in agreement with the theoretical prediction. Additionally, the regulation is the intrinsic property depending on the position and number of the nitrogen atoms in the backbone and is irrelevant to the number and type of the anchoring groups. Our findings provide qualitative guidance for tuning the electron transport based on DQI in heterocycle molecular devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa