Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 15320-15330, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38683738

RESUMO

Palladium hydrides (PdHx) are pivotal in both fundamental research and practical applications across a wide spectrum. PdHx nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature. The substantial challenges in characterizing nanoscale structures contribute to the limited understanding of this anomalous phenomenon. Here, through a series of well-conceived experimental designs and advanced characterization techniques, including aberration-corrected scanning transmission electron microscopy (AC-STEM), in situ X-ray diffraction (XRD), and time-of-flight secondary ion mass spectrometry (TOF-SIMS), we have uncovered evidence that indicates the presence of C and N within the lattice of Pd (PdCxNy), rather than H (PdHx). By combining theoretical calculations, we have thoroughly studied the potential configurations and thermodynamic stability of PdCxNy, demonstrating a 2.5:1 ratio of C to N infiltration into the Pd lattice. Furthermore, we successfully modulated the electronic structure of Pd nanocrystals through C and N doping, enhancing their catalytic activity in methanol oxidation reactions. This breakthrough provides a new perspective on the structure and composition of Pd-based nanocrystals infused with light elements, paving the way for the development of advanced catalytic materials in the future.

2.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375160

RESUMO

The main protease (Mpro) is a promising drug target for inhibiting the coronavirus due to its conserved properties and lack of homologous genes in humans. However, previous studies on Mpro's kinetic parameters have been confusing, hindering the selection of accurate inhibitors. Therefore, obtaining a clear view of Mpro's kinetic parameters is necessary. In our study, we investigated the kinetic behaviors of Mpro from SARS-CoV-2 and SARS-CoV using both FRET-based cleavage assay and the LC-MS method, respectively. Our findings indicate that the FRET-based cleavage assay could be used for preliminary screening of Mpro inhibitors, while the LC-MS method should be applied to select the effective inhibitors with higher reliability. Furthermore, we constructed the active site mutants (H41A and C145A) and measured the kinetic parameters to gain a deeper understanding of the atomic-level enzyme efficiency reduction compared to the wild type. Overall, our study provides valuable insights for inhibitor screening and design by offering a comprehensive understanding of Mpro's kinetic behaviors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Reprodutibilidade dos Testes , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas não Estruturais Virais , Peptídeo Hidrolases
3.
Nat Mater ; 20(10): 1385-1391, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112977

RESUMO

Replacing scarce and expensive platinum (Pt) with metal-nitrogen-carbon (M-N-C) catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has largely been impeded by the low oxygen reduction reaction activity of M-N-C due to low active site density and site utilization. Herein, we overcome these limits by implementing chemical vapour deposition to synthesize Fe-N-C by flowing iron chloride vapour over a Zn-N-C substrate at 750 °C, leading to high-temperature trans-metalation of Zn-N4 sites into Fe-N4 sites. Characterization by multiple techniques shows that all Fe-N4 sites formed via this approach are gas-phase and electrochemically accessible. As a result, the Fe-N-C catalyst has an active site density of 1.92 × 1020 sites per gram with 100% site utilization. This catalyst delivers an unprecedented oxygen reduction reaction activity of 33 mA cm-2 at 0.90 V (iR-corrected; i, current; R, resistance) in a H2-O2 proton exchange membrane fuel cell at 1.0 bar and 80 °C.

4.
J Am Chem Soc ; 142(42): 17812-17827, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32996766

RESUMO

Increasing the platinum utilization efficiency is the key to the advancement and broad dissemination of proton-exchange-membrane fuel cells (PEMFCs). Central to the task is the creation of highly active and durable Pt-based catalysts for the cathodic oxygen reduction reaction (ORR), which demands a comprehensive understanding of the ORR processes on these catalysts under reaction conditions. Past efforts have accumulated a vast wealth of knowledge of the ORR on extended Pt and Pt-alloy model surfaces. While the knowledge has been applied to understanding and designing ORR catalysts, it has also been recognized that these understandings cannot always translate into nanoscale systems. In this Perspective, we will review the progress that the theoretical descriptor has evolved to reconcile the observed differences between extended and nanoscale Pt surfaces, and we highlight the needs in advancing both characterizations and theories in order to understand ORR in the more complex Pt-alloy nanocatalysts. Particularly, understanding the dynamic structure-composition-function relation of Pt-alloy nanocatalysts during ORR demands concerted efforts in precision synthesis, advanced atomistic-scale in situ characterization, and comprehensive computational models.

5.
J Am Chem Soc ; 142(3): 1417-1423, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31880925

RESUMO

Pyrolysis is indispensable for synthesizing highly active Fe-N-C catalysts for the oxygen reduction reaction (ORR) in acid, but how Fe, N, and C precursors transform to ORR-active sites during pyrolysis remains unclear. This knowledge gap obscures the connections between the input precursors and the output products, clouding the pathway toward Fe-N-C catalyst improvement. Herein, we unravel the evolution pathway of precursors to ORR-active catalyst comprised exclusively of single-atom Fe1(II)-N4 sites via in-temperature X-ray absorption spectroscopy. The Fe precursor transforms to Fe oxides below 300 °C and then to tetrahedral Fe1(II)-O4 via a crystal-to-melt-like transformation below 600 °C. The Fe1(II)-O4 releases a single Fe atom that diffuses into the N-doped carbon defect forming Fe1(II)-N4 above 600 °C. This vapor-phase single Fe atom transport mechanism is verified by synthesizing Fe1(II)-N4 sites via "noncontact pyrolysis" wherein the Fe precursor is not in physical contact with the N and C precursors during pyrolysis.

6.
J Am Chem Soc ; 141(7): 3232-3239, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30673227

RESUMO

Despite the fundamental and practical significance of the hydrogen evolution and oxidation reactions (HER/HOR), their kinetics in base remain unclear. Herein, we show that the alkaline HER/HOR kinetics can be unified by the catalytic roles of the adsorbed hydroxyl (OHad)-water-alkali metal cation (AM+) adducts, on the basis of the observations that enriching the OHad abundance via surface Ni benefits the HER/HOR; increasing the AM+ concentration only promotes the HER, while varying the identity of AM+ affects both HER/HOR. The presence of OHad-(H2O) x-AM+ in the double-layer region facilitates the OHad removal into the bulk, forming OH--(H2O) x-AM+ as per the hard-soft acid-base theory, thereby selectively promoting the HER. It can be detrimental to the HOR as per the bifunctional mechanism, as the AM+ destabilizes the OHad, which is further supported by the CO oxidation results. This new notion may be important for alkaline electrochemistry.

7.
Nano Lett ; 18(2): 798-804, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29272136

RESUMO

Doping with a transition metal was recently shown to greatly boost the activity and durability of PtNi/C octahedral nanoparticles (NPs) for the oxygen reduction reaction (ORR), but its specific roles remain unclear. By combining electrochemistry, ex situ and in situ spectroscopic techniques, density functional theory calculations, and a newly developed kinetic Monte Carlo model, we showed that Mo atoms are preferentially located on the vertex and edge sites of Mo-PtNi/C in the form of oxides, which are stable within the wide potential window of the electrochemical cycle. These surface Mo oxides stabilize adjacent Pt sites, hereby stabilizing the octahedral shape enriched with (111) facets, and lead to increased concentration of Ni in subsurface layers where they are protected against acid dissolution. Consequently, the favorable Pt3Ni(111) structure for the ORR is stabilized on the surface of PtNi/C NPs in acid against voltage cycling. Significantly, the unusual potential-dependent oxygen coverage trend on Mo-doped PtNi/C NPs as revealed by the surface-sensitive Δµ analysis suggests that the Mo dopants may also improve the ORR kinetics by modifying the coordination environments of Pt atoms on the surface. Our studies point out a possible way to stabilize the favorable shape and composition established on conceptual catalytic models in practical nanoscale catalysts.

8.
J Am Chem Soc ; 140(29): 9046-9050, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29983055

RESUMO

Hydrogen holds the potential of replacing nonrenewable fossil fuel. Improving the efficiency of hydrogen evolution reaction (HER) is critical for environmental friendly hydrogen generation through electrochemical or photoelectrochemical water splitting. Here we report the surface-engineered PtNi-O nanoparticles with enriched NiO/PtNi interface on surface. Notably, PtNi-O/C showed a mass activity of 7.23 mA/µg at an overpotential of 70 mV, which is 7.9 times higher compared to that of the commercial Pt/C, representing the highest reported mass activity for HER in alkaline conditions. The HER overpotential can be lowered to 39.8 mV at 10 mA/cm2 when platinum loading was only 5.1 µgpt/cm2, showing exceptional HER efficiency. Meanwhile, the prepared PtNi-O/C nanostructures demonstrated significantly improved stability as well as high current performance which are well over those of the commercial Pt/C and demonstrated capability of scaled hydrogen generation.

9.
J Am Chem Soc ; 140(49): 17255-17262, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30449094

RESUMO

The precise control of stoichiometric balance and ionic defects on the surface of solution-processed perovskite is critical to the performance and stability of perovskite solar cells (pero-SCs). Here, we introduce a low-cost and stable conjugated donor polymer (PTQ10) as interfacial layer in the planar n-i-p structured pero-SCs. The polymer was applied to the perovskite intermediate phase before the thermal annealing. This treatment significantly reduced the loss of surface organic cation during thermal annealing. Importantly, the kinetics of phase conversion of perovskite was influenced, and perovskite crystal showed a more preferential orientation. Moreover, the polymer proved to be an effective hole extraction layer due to the proper energy alignment with perovskite. Finally, a champion power conversion efficiency of the planar pero-SCs was achieved at 21.2% with a high fill factor of 81.6%. The devices also showed great ambient and thermal stability. This work presents a facile way of perovskite surface control to achieve high-performance pero-SCs.

10.
Small ; 13(5)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27862908

RESUMO

Ultrathin platinum nanowires obtained from wet-synthesis with no strong binding ligands exhibit very high sensitivity toward hydrogen gas (two orders of magnitude increase compared with state-of-the-art devices). Their chemical sensitivity, selectivity, and other sensing characteristics can be rationally tailored through further surface engineering. A significantly reduced cross-sensitivity toward humidity is achieved, while the hydrogen sensitivity is preserved or even enhanced.

11.
Nat Mater ; 15(5): 564-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26808458

RESUMO

Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

12.
Nano Lett ; 16(4): 2762-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26950511

RESUMO

Highly open metallic nanoframes represent an emerging class of new nanostructures for advanced catalytic applications due to their fancy outline and largely increased accessible surface area. However, to date, the creation of bimetallic nanoframes with tunable structure remains a challenge. Herein, we develop a simple yet efficient chemical method that allows the preparation of highly composition segregated Pt-Ni nanocrystals with controllable shape and high yield. The selective use of dodecyltrimethylammonium chloride (DTAC) and control of oleylamine (OM)/oleic acid (OA) ratio are critical to the controllable creation of highly composition segregated Pt-Ni nanocrystals. While DTAC mediates the compositional anisotropic growth, the OM/OA ratio controls the shapes of the obtained highly composition segregated Pt-Ni nanocrystals. To the best of our knowledge, this is the first report on composition segregated tetrahexahedral Pt-Ni NCs. Importantly, by simply treating the highly composition segregated Pt-Ni nanocrystals with acetic acid overnight, those solid Pt-Ni nanocrystals can be readily transformed into highly open Pt-Ni nanoframes with hardly changed shape and size. The resulting highly open Pt-Ni nanoframes are high-performance electrocatalysts for both oxygen reduction reaction and alcohol oxidations, which are far better than those of commercial Pt/C catalyst. Our results reported herein suggest that enhanced catalysts can be developed by engineering the structure/composition of the nanocrystals.

13.
Nano Lett ; 15(7): 4605-10, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26056845

RESUMO

Scalable preparation of solution processable graphene and its bulk materials with high specific surface areas and designed porosities is essential for many practical applications. Herein, we report a scalable approach to produce aqueous dispersions of holey graphene oxide with abundant in-plane nanopores via a convenient mild defect-etching reaction and demonstrate that the holey graphene oxide can function as a versatile building block for the assembly of macrostructures including holey graphene hydrogels with a three-dimensional hierarchical porosity and holey graphene papers with a compact but porous layered structure. These holey graphene macrostructures exhibit significantly improved specific surface area and ion diffusion rate compared to the nonholey counterparts and can be directly used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 283 F/g and 234 F/cm(3), excellent rate capabilities, and superior cycling stabilities. Our study defines a scalable pathway to solution processable holey graphene materials and will greatly impact the applications of graphene in diverse technological areas.

14.
Nano Lett ; 15(7): 4692-8, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26052643

RESUMO

Titanium oxide (TiO2) represents one of most widely studied materials for photoelectrochemical (PEC) water splitting but is severely limited by its poor efficiency in the visible light range. Here, we report a significant enhancement of visible light photoactivity in nitrogen-implanted TiO2 (N-TiO2) nanowire arrays. Our systematic studies show that a post-implantation thermal annealing treatment can selectively enrich the substitutional nitrogen dopants, which is essential for activating the nitrogen implanted TiO2 to achieve greatly enhanced visible light photoactivity. An incident photon to electron conversion efficiency (IPCE) of ∼10% is achieved at 450 nm in N-TiO2 without any other cocatalyst, far exceeding that in pristine TiO2 nanowires (∼0.2%). The integration of oxygen evolution reaction (OER) cocatalyst with N-TiO2 can further increase the IPCE at 450 nm to ∼17% and deliver an unprecedented overall photocurrent density of 1.9 mA/cm(2), by integrating the IPCE spectrum with standard AM 1.5G solar spectrum. Systematic photoelectrochemical and electrochemical studies demonstrated that the enhanced PEC performance can be attributed to the significantly improved visible light absorption and more efficient charge separation. Our studies demonstrate the implantation approach can be used to reliably dope TiO2 to achieve the best performed N-TiO2 photoelectrodes to date and may be extended to fundamentally modify other semiconductor materials for PEC water splitting.


Assuntos
Luz , Nanofios/química , Nanofios/efeitos da radiação , Nitrogênio/química , Titânio/química , Água/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Processos Fotoquímicos
15.
Angew Chem Int Ed Engl ; 55(22): 6502-5, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27094459

RESUMO

Increasing the active edge sites of molybdenum disulfide (MoS2 ) is an efficient strategy to improve the overall activity of MoS2 for the hydrogen-evolution reaction (HER). Herein, we report a strategy to synthesize the ultrasmall donut-shaped Cu7 S4 @MoS2 hetero-nanoframes with abundant active MoS2 edge sites as alternatives to platinum (Pt) as efficient HER electrocatalysts. These nanoframes demonstrate an ultrahigh activity with 200 mA cm(-2) current density at only 206 mV overpotential using a carbon-rod counter electrode. The finding may provide guidelines for the design and synthesis of efficient and non-precious chalcogenide nanoframe catalysts.

16.
J Am Chem Soc ; 137(50): 15672-5, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26636882

RESUMO

We have developed an efficient strategy for the production of stable ß-palladium hydride (PdH0.43) nanocrystals with controllable shapes and remarkable stability. The as-synthesized PdH0.43 nanocrystals showed impressive stability in air at room temperature for over 10 months, which has enabled the investigation of their catalytic property for the first time. The prepared PdH0.43 nanocrystals served as highly efficient catalysts in the oxidation of methanol, showing higher activity than their Pd counterparts. These studies opened a door for further exploration of ß-palladium hydride-based nanomaterials as a new class of promising catalytic materials and beyond.

17.
Nano Lett ; 14(7): 3887-94, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24873775

RESUMO

Structural defects/grain boundaries in metallic materials can exhibit unusual chemical reactivity and play important roles in catalysis. Bulk polycrystalline materials possess many structural defects, which is, however, usually inaccessible to solution reactants and hardly useful for practical catalytic reactions. Typical metallic nanocrystals usually exhibit well-defined crystalline structure with few defects/grain boundaries. Here, we report the design of ultrafine wavy nanowires (WNWs) with a high density of accessible structural defects/grain boundaries as highly active catalytic hot spots. We show that rhodium WNWs can be readily synthesized with controllable number of structural defects and demonstrate the number of structural defects can fundamentally determine their catalytic activity in selective oxidation of benzyl alcohol by O2, with the catalytic activity increasing with the number of structural defects. X-ray photoelectron spectroscopy (XPS) and cyclic voltammograms (CVs) studies demonstrate that the structural defects can significantly alter the chemical state of the Rh WNWs to modulate their catalytic activity. Lastly, our systematic studies further demonstrate that the concept of defect engineering in WNWs for improved catalytic performance is general and can be readily extended to other similar systems, including palladium and iridium WNWs.

18.
Adv Sci (Weinh) ; 10(17): e2300550, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097627

RESUMO

Proton exchange membrane fuel cell (PEMFC) is one of the most promising energy conversion devices with high efficiency and zero emission. However, oxygen reduction reaction (ORR) at the cathode is still the dominant limiting factor for the practical development of PEMFC due to its sluggish kinetics and the vulnerability of ORR catalysts under harsh operating conditions. Thus, the development of high-performance ORR catalysts is essential and requires a better understanding of the underlying ORR mechanism and the failure mechanisms of ORR catalysts with in situ characterization techniques. This review starts with the introduction of in situ techniques that have been used in the research of the ORR processes, including the principle of the techniques, the design of the in situ cells, and the application of the techniques. Then the in situ studies of the ORR mechanism as well as the failure mechanisms of ORR catalysts in terms of Pt nanoparticle degradation, Pt oxidation, and poisoning by air contaminants are elaborated. Furthermore, the development of high-performance ORR catalysts with high activity, anti-oxidation ability, and toxic-resistance guided by the aforementioned mechanisms and other in situ studies are outlined. Finally, the prospects and challenges for in situ studies of ORR in the future are proposed.

19.
Adv Mater ; 35(23): e2301533, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36944373

RESUMO

Hydrazine-assisted water electrolysis offers a feasible path for low-voltage green hydrogen production. Herein, the design and synthesis of ultrathin RhRu0.5 -alloy wavy nanowires as bifunctional electrocatalysts for both the anodic hydrazine oxidation reaction (HzOR) and the cathodic hydrogen evolution reaction (HER) is reported. It is shown that the RhRu0.5 -alloy wavy nanowires can achieve complete electrooxidation of hydrazine with a low overpotential and high mass activity, as well as improved performance for the HER. The resulting RhRu0.5 bifunctional electrocatalysts enable, high performance hydrazine-assisted water electrolysis delivering a current density of 100 mA cm-2 at an ultralow cell voltage of 54 mV and a high current density of 853 mA cm-2 at a cell voltage of 0.6 V. The RhRu0.5  electrocatalysts further demonstrate a stable operation at a high current density of 100 mA cm-2 for 80 hours of testing period with little irreversible degradation. The overall performance greatly exceeds that of the previously reported hydrazine-assisted water electrolyzers, offering a pathway for efficiently converting hazardous hydrazine into molecular hydrogen.

20.
J Am Chem Soc ; 134(35): 14345-8, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22901021

RESUMO

A general synthetic strategy for yolk-shell nanocrystal@ZIF-8 nanostructures has been developed. The yolk-shell nanostructures possess the functions of nanoparticle cores, microporous shells, and a cavity in between, which offer great potential in heterogeneous catalysis. The synthetic strategy involved first coating the nanocrystal cores with a layer of Cu(2)O as the sacrificial template and then a layer of polycrystalline ZIF-8. The clean Cu(2)O surface assists in the formation of the ZIF-8 coating layer and is etched off spontaneously and simultaneously during this process. The yolk-shell nanostructures were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and nitrogen adsorption. To study the catalytic behavior, hydrogenations of ethylene, cyclohexene, and cyclooctene as model reactions were carried out over the Pd@ZIF-8 catalysts. The microporous ZIF-8 shell provides excellent molecular-size selectivity. The results show high activity for the ethylene and cyclohexene hydrogenations but not in the cyclooctene hydrogenation. Different activation energies for cyclohexene hydrogenation were obtained for nanostructures with and without the cavity in between the core and the shell. This demonstrates the importance of controlling the cavity because of its influence on the catalysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa