Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(3): 524-537, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36042292

RESUMO

Amyotrophic lateral sclerosis (ALS) is one of the most common fatal neurodegenerative diseases in adults. ALS pathogenesis is associated with toxic SOD1 aggregates generated by mutant SOD1. Since autophagy is responsible for the clearance of toxic protein aggregates including SOD1 aggregates, autophagy induction has been considered as a potential strategy for treating ALS. Autophagic signaling is initiated by unc-51 like autophagy activating kinase 1 (ULK1) complex. We previously identified that BL-918 as a specific ULK1 activator, which exerted cytoprotective effect against Parkinson's disease in vitro and in vivo. In this study we investigated whether BL-918 exerted a therapeutic effect against ALS, and characterized its pharmacokinetic profile in rats. In hSODG93A-NSC34 cells, treatment with BL-918 (5, 10 µM) dose-dependently induced ULK1-dependent autophagy, and eliminated toxic SOD1 aggregates. In SODG93A mice, administration of BL-918 (40, 80 mg/kg, b.i.d., i.g.) dose-dependently prolonged lifespan and improved the motor function, and enhanced the clearance of SOD1 aggregates in spinal cord and cerebral cortex through inducing autophagy. In the pharmacokinetic study conducted in rats, we found BL-918 and its 2 metabolites (M8 and M10) present in spinal cord and brain; after intragastric and intravenous administration, BL-918 reached the highest blood concentration compared to M8 and M10. Collectively, ULK1 activator BL-918 displays a therapeutic potential on ALS through inducing cytoprotective autophagy. This study provides a further clue for autophagic dysfunction in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Ratos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894802

RESUMO

Paclitaxel, a natural anticancer drug, is widely recognized and extensively utilized in the treatment of breast cancer (BC). However, it may lead to certain side effects or drug resistance. Fortunately, combination therapy with another anti-tumor agent has been explored as an option to improve the efficacy of paclitaxel in the treatment of BC. Herein, we first evaluated the synergistic effects of paclitaxel and flubendazole through combination index (CI) calculations. Secondly, flubendazole was demonstrated to synergize paclitaxel-mediated BC cell killing in vitro and in vivo. Moreover, we discovered that flubendazole could reverse the drug resistance of paclitaxel-resistant BC cells. Mechanistically, flubendazole was demonstrated to enhance the inhibitory effect of paclitaxel via HIF1α/PI3K/AKT signaling pathways. Collectively, our findings demonstrate the effectiveness of flubendazole in combination with paclitaxel for treating BC, providing an insight into exploiting more novel combination therapies for BC in the future.


Assuntos
Neoplasias da Mama , Paclitaxel , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos
3.
J Nat Prod ; 84(4): 1067-1077, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33666437

RESUMO

Five new aconitine-type C19-diterpenoid alkaloids, apetalrines A-E (1-5), were isolated from Aconitum apetalum. Their structures were determined by analysis of 1D and 2D NMR, IR, and HRESIMS data. Semisynthesis of apetalrine B (2) from its parent compound aconorine was achieved to confirm the structure proposed. Twenty derivatives of 2 (11a-11l, 12a, 12b, 12d, 12e, 12j, 12k, 12m, 12n) were synthesized via a unified approach relying on simple coupling reactions. The evaluation of neuroprotective effects of compounds (1-5, 11b, 11c, 11f-11i, 12a, 12b, 12d, 12e, 12k, 12m, 12n) with low cytotoxicity revealed compound 2 to exhibit good neuroprotective effects in H2O2-treated SH-SY5Y cells at a concentration of 50 µM. A series of studies using flow cytometry, staining, and Western blotting on 2 indicated that its neuroprotective effects may arise from inhibiting cell apoptosis.


Assuntos
Aconitum/química , Alcaloides/farmacologia , Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Alcaloides/química , Apoptose/efeitos dos fármacos , Linhagem Celular , China , Diterpenos/química , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Raízes de Plantas/química
4.
Pharmacol Res ; 152: 104605, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863866

RESUMO

Ferulin C, a natural sesquiterpene coumarin, isolated from the roots of Ferula ferulaeoides (Steud.) Korov, displaying potent antiproliferatory activity against breast cancer cells. This study aimed to elucidate the underlying molecular mechanisms of Ferulin C-induced breast cancer cells death in vitro and in vivo. Ferulin C presented potent antiproliferatory activity against MCF-7 and MDA-MB-231 cells and remarkable tubulin polymerization inhibitory activity (IC50 = 9.2 µM). Meanwhile, we predicted Ferulin C bind to the Colchicine site of tubulin through CETSA assay, molecular docking and molecular dynamics (MD) simulations. In immunofluorescence assay, Ferulin C disturbed the microtubule integrity and structure. Furthermore, Ferulin C stimulated significant cell cycle arrest in the G1/S period via p21Cip1/Waf1 - CDK2 signaling, induced classic cell apoptosis, impaired metastasis via down-regulating Ras-Raf-ERK and AKT-mTOR signaling. Intriguingly, Ferulin C treatment induced autophagy by ULK1 signaling to synergize with the inhibition of proliferation and metastasis. Based upon the RNAseq analysis, PAK1, as a novel essential modulator, was involved in the signaling regulated by Ferulin C -induced α/ß-tubulin depolymerization. Additionally, Ferulin C displayed an acceptable antiproliferatory activity in an MCF-7 xenograft model without inducing obvious weight loss in the Ferulin C treated mice. Summarily, our findings substantiated that Ferulin C was a potent, colchicine site binding microtubule-destabilizing agent with anti-proliferation and anti-metastasis activity via PAK1 and p21-mediated signaling in breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Neoplasias Mamárias Experimentais/metabolismo , Sesquiterpenos/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/uso terapêutico , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos Endogâmicos BALB C , Polimerização , Sesquiterpenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Moduladores de Tubulina/uso terapêutico , Quinases Ativadas por p21/metabolismo
5.
Bioorg Med Chem Lett ; 29(19): 126623, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31439379

RESUMO

Sodium taurocholate cotransport polypeptide (NTCP) plays an important role in the development of hepatitis and acts as a switch to allow hepatitis virus to enter hepatic cells. As the entry receptor protein of hepatitis virus, NTCP is also an effective target for the treatment of hepatocellular carcinoma. Herein, twenty-five benzamide analogues were synthesized based on the virtual screening design and their anti-proliferative activities against HepG2 cells were evaluated in vitro. Compound 35 was found to be promising, with an IC50 value of 2.8 µM. The apoptosis induced by 35 was characterized by the regulation of markers, including an increase in Bax, cleaved-caspase 3, and cleaved-PARP proteins, and a decrease in Bcl-2 protein. Molecular docking and molecular dynamics (MD) simulation confirmed that compound 35 can bind tightly to NTCP. Western blot analysis also showed that NTCP was inhibited. Altogether, these results indicate that compound 35 acts as a novel NTCP inhibitor to induce apoptosis in HepG2 cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Benzamidas/química , Desenho de Fármacos , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Antivirais/síntese química , Apoptose , Células Hep G2 , Hepatite B/virologia , Humanos , Simulação de Acoplamento Molecular , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Internalização do Vírus
6.
Chem Pharm Bull (Tokyo) ; 66(6): 674-677, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29593174

RESUMO

We isolated two new lathyrane-type diterpenes L27 (1) and L28 (2) along with seven known compounds (3-9) from the seeds of Euphorbia lathyris. These compounds were identified by NMR, high-resolution electrospray ionisation (HR-ESI)-MS as well as IR spectroscopy. Compounds 1 and 2 were assigned NMR spectrums with 1H-NMR, 13C-NMR, distortionless enhancement by polarization (DEPT), correlation spectroscopy (COSY), heteronuclear multiple quantum coherence (HMQC), heteronuclear multiple bond connectivity (HMBC) and nuclear Overhauser effect spectroscopy (NOESY). Stereo configuration of 1 and 2 were confirmed by comprehensive interpretation of their nuclear Overhauser effect (NOE) relationship and showed they were first natural lathyrane-type diterpenes possessing α-configuration substitutes at C-3. Cytotoxicity assay of isolated compounds were evaluated against breast cancer cell lines MCF-7 or MDA-MB-231, 786-0 and liver cancer cell lines HepG2. As a result, Euphorbia factor L28 (2) showed strongly cytotoxicity to the 786-0 and HepG2 cell lines, with an IC50 value of 9.43 and 13.22 µM, respectively, which preliminarily suggested that the configuration of lathyrane-type diterpene at C-3 has a significant effect on its bioactivity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Euphorbia/química , Extratos Vegetais/farmacologia , Sementes/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Células MCF-7 , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
7.
Chem Biodivers ; 15(11): e1800386, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30156375

RESUMO

A new premyrsinane-type diterpenoid, premylanin (1), and four new lathyrane-type diterpenoids named Euphorbia Factors L30 -L33 (2-5) were isolated from the seeds of Euphorbia lathyris, together with thirteen known ones (6-18). Their structures were elucidated through spectroscopic analyses, including IR, UV, HR-ESI-MS, 1D- and 2D-NMR. The cytotoxicities of compounds 1-4 and 6-18 against HCT116, MCF-7, 786-0, HepG2 cell lines were evaluated, and compound 13 exhibited considerable cytotoxic activities with an IC50 values of 6.44, 8.43, 15.3, 9.32 µm, respectively.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Euphorbia/química , Sementes/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Sci Adv ; 10(10): eadl0026, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457511

RESUMO

Achieving regioselective synthesis in complex molecules with multiple reactive sites remains a tremendous challenge in synthetic chemistry. Regiodivergent palladium-catalyzed C─H arylation of complex antitumor drug osimertinib with various aryl bromides via the late-stage functionalization strategy was demonstrated here. This reaction displayed a switch in regioselectivity under complete base control. Potassium carbonate (K2CO3) promoted the arylation of acrylamide terminal C(sp2)-H, affording 34 derivatives. Conversely, sodium tert-butoxide (t-BuONa) mediated the aryl C(sp2)-H arylation of the indole C2 position, providing 27 derivatives. The derivative 3r containing a 3-fluorophenyl group at the indole C2 position demonstrated similar inhibition of EGFRT790M/L858R and superior antiproliferative activity in H1975 cells compared to osimertinib, as well as similar antiproliferative activity in A549 cells and antitumor efficacy in xenograft mouse model bearing H1975 cells. This approach provides a "one substrate-multi reactions-multiple products" strategy for the structural modification of complex drug molecules, creating more opportunities for the fast screening of pharmaceutical molecules.


Assuntos
Acrilamidas , Compostos de Anilina , Neoplasias Pulmonares , Paládio , Pirimidinas , Humanos , Animais , Camundongos , Paládio/química , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases , Indóis/química , Catálise
9.
Biochem Pharmacol ; 217: 115842, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37802240

RESUMO

RAS/RAF/MEK/ERK signaling pathway is one of the most important pathways of Mitogen-activated protein kinases (MAPK), which widely participate in regulating cell proliferation, differentiation, apoptosis and signaling transduction. Autophagy is an essential mechanism that maintains cellular homeostasis by degrading aged and damaged organelles. Recently, some studies revealed RAS/RAF/MEK/ERK signaling pathway is closely related to autophagy regulation and has a dual effect in tumor cells. However, the specific mechanism by which RAS/RAF/MEK/ERK signaling pathway participates in autophagy regulation is not fully understood. This article provides a comprehensive review of the research progress with regard to the RAS/RAF/MEK/ERK signaling pathway and autophagy, as well as their interplay in cancer therapy. The impact of small molecule inhibitors that target the RAS/RAF/MEK/ERK signaling pathway on autophagy is discussed in this study. The advantages and limitations of the clinical combination of these small molecule inhibitors with autophagy inhibitors are also explored. The findings from this study may provide additional perspectives for future cancer treatment strategies.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias , Idoso , Humanos , Autofagia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Quinases raf/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
10.
Eur J Med Chem ; 255: 115404, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37098296

RESUMO

Dual leucine zipper kinase (DLK, MAP3K12), a serine/threonine protein kinase, plays a key role in neuronal development, as it regulates axon regeneration and degeneration through its downstream kinase. Importantly, DLK is closely related to the pathogenesis of numerous neurodegenerative diseases and the induction of ß-cell apoptosis that leads to diabetes. In this review, we summarize the current understanding of DLK function, and then discuss the role of DLK signaling in human diseases. Furthermore, various types of small molecule inhibitors of DLK that have been published so far are described in detail in this paper, providing some strategies for the design of DLK small molecule inhibitors in the future.


Assuntos
Axônios , MAP Quinase Quinase Quinases , Humanos , Axônios/metabolismo , Zíper de Leucina , Regeneração Nervosa , Proteínas Serina-Treonina Quinases/metabolismo
11.
Eur J Med Chem ; 259: 115648, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478560

RESUMO

Triple negative breast cancer (TNBC) is one of the most aggressive breast tumors, with a high rate of recurrence and metastasis as well as a poor prognosis. Consequently, it is urgent to find new targeted therapeutic strategies and development of corresponding drugs. Previous studies have shown that CDK12 inhibitors in combination with PARP1 inhibitors is able to induce synthetic lethality in TNBC cells. Here, we reported simultaneously inhibition of CDK12 and PARP1 by genetic or pharmacological approaches synergistically inhibited the proliferation of TNBC cells. Then, a series of small molecule inhibitors targeting both CDK12 and PARP1 were designed and synthesized. The new dual-target inhibitor (12e) showed potent inhibitory activity against CDK12 (IC50 = 285 nM) and PARP1 (IC50 = 34 nM), as well as good anti-proliferative effects in TNBC cell lines. Meanwhile, compound 12e showed favorable synergistic anti-tumor efficacy in cells and xenografts by inhibiting DNA damage repair, promoting cell cycle arrest and apoptosis. Taken together, we successfully synthesized the first effective CDK12-PARP1 dual inhibitor, which is expected to be an attractive therapeutic strategy for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Mutações Sintéticas Letais , Linhagem Celular Tumoral , Reparo do DNA , Proliferação de Células , Poli(ADP-Ribose) Polimerase-1/metabolismo , Quinases Ciclina-Dependentes/metabolismo
12.
Front Neuroanat ; 16: 910427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756499

RESUMO

Neurodegenerative diseases (NDs) are becoming a serious public health concern as the world's population continues to age, demanding the discovery of more effective therapies. Excessive formation of reactive oxygen species (ROS) can result in oxidative stress (OS), which can be regarded as one of the common causes of neurodegenerative diseases (NDs). Thus, in this review, we focus on summarizing the consequences of ROS NDs, while taking the four prevalent NDs as examples, including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), to illustrate the key signaling pathways and relevant drugs. Together, these findings may shed new light on a field in which ROS-related pathways play a key role; thereby setting the groundwork for the future therapeutic development of neurodegenerative diseases.

13.
Acta Pharm Sin B ; 12(10): 3743-3782, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213540

RESUMO

UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.

14.
Cell Death Dis ; 13(4): 375, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440104

RESUMO

Breast cancer is still one of the most common malignancies worldwide and remains a major clinical challenge. We previously reported that the anthelmintic drug flubendazole induced autophagy and apoptosis via upregulation of eva-1 homolog A (EVA1A) in triple-negative breast cancer (TNBC) and was repurposed as a novel anti-tumor agent. However, the detailed underlying mechanisms remain unclear and need further investigation. Here, we found that flubendazole impairs the permeability of the mitochondrial outer membrane and mitochondrial function in breast cancer. Meanwhile, flubendazole increased dynamin-related protein (DRP1) expression, leading to the accumulation of PTEN induced putative kinase 1 (PINK1) and subsequent mitochondrial translocation of Parkin, thereby promoting excessive mitophagy. The resultant excessive mitophagy contributed to mitochondrial damage and dysfunction induced by flubendazole, thus inhibiting breast cancer cells proliferation and migration. Moreover, we demonstrated that excessive DRP1-mediated mitophagy played a critical role in response to the anti-tumor effects of EVA1A in breast cancer. Taken together, our results provide new insights into the molecular mechanisms in relation to the anti-tumor activities of flubendazole, and may be conducive to its rational use in potential clinical applications.


Assuntos
Mitofagia , Neoplasias de Mama Triplo Negativas , Dinaminas/metabolismo , Humanos , Mebendazol/análogos & derivados , Mitocôndrias/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Acta Pharm Sin B ; 12(2): 532-557, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256933

RESUMO

Drug repurposing or repositioning has been well-known to refer to the therapeutic applications of a drug for another indication other than it was originally approved for. Repurposing non-oncology small-molecule drugs has been increasingly becoming an attractive approach to improve cancer therapy, with potentially lower overall costs and shorter timelines. Several non-oncology drugs approved by FDA have been recently reported to treat different types of human cancers, with the aid of some new emerging technologies, such as omics sequencing and artificial intelligence to overcome the bottleneck of drug repurposing. Therefore, in this review, we focus on summarizing the therapeutic potential of non-oncology drugs, including cardiovascular drugs, microbiological drugs, small-molecule antibiotics, anti-viral drugs, anti-inflammatory drugs, anti-neurodegenerative drugs, antipsychotic drugs, antidepressants, and other drugs in human cancers. We also discuss their novel potential targets and relevant signaling pathways of these old non-oncology drugs in cancer therapies. Taken together, these inspiring findings will shed new light on repurposing more non-oncology small-molecule drugs with their intricate molecular mechanisms for future cancer drug discovery.

16.
ACS Omega ; 7(32): 28334-28341, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990425

RESUMO

Natural microtubule inhibitors, such as paclitaxel and ixabepilone, are key sources of novel medications, which have a considerable influence on anti-tumor chemotherapy. Natural product chemists have been encouraged to create novel methodologies for screening the new generation of microtubule inhibitors from the enormous natural product library. There have been major advancements in the use of artificial intelligence in medication discovery recently. Deep learning algorithms, in particular, have shown promise in terms of swiftly screening effective leads from huge compound libraries and producing novel compounds with desirable features. We used a deep neural network to search for potent ß-microtubule inhibitors in natural goods. Eleutherobin, bruceine D (BD), and phorbol 12-myristate 13-acetate (PMA) are three highly effective natural compounds that have been found as ß-microtubule inhibitors. In conclusion, this paper describes the use of deep learning to screen for effective ß-microtubule inhibitors. This research also demonstrates the promising possibility of employing deep learning to develop drugs from natural products for a wider range of disorders.

17.
ACS Omega ; 6(14): 9960-9972, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869976

RESUMO

A new series of N-aryltacrine derivatives were designed and synthesized as cholinesterase inhibitors by the late-stage modification of tacrine, using the palladium-catalyzed Buchwald-Hartwig cross-coupling reaction. In vitro inhibition assay against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) demonstrated that most of the synthesized compounds had potent AChE inhibitory activity with negative inhibition of BuChE. Among them, N-(4-(trifluoromethyl)phenyl)-tacrine (3g) and N-(4-methoxypyridin-2-yl)-tacrine (3o) showed the most potent activity against AChE (IC50 values of 1.77 and 1.48 µM, respectively). The anti-AChE activity of 3g and 3o was 3.5 times more than that of tacrine (IC50 value of 5.16 µM). Compound 3o also displayed anti-BuChE activity with an IC50 value of 19.00 µM. Cell-based assays against HepG2 and SH-SY5Y cell lines revealed that 3o had significantly lower hepatotoxicity compared to tacrine, with additional neuroprotective activity against H2O2-induced damage in SH-SY5Y cells. The advantages including synthetic accessibility, high potency, low toxicity, and adjunctive neuroprotective activity make compound 3o a new promising multifunctional candidate for the treatment of Alzheimer's disease.

18.
Eur J Med Chem ; 204: 112505, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717479

RESUMO

Eukaryotic elongation factor 2 kinase (eEF2K) is a key α-kinase that negatively regulates the extension step of protein synthesis, which consumes most of the energy and amino acids required for protein synthesis. Studies have found that eEF2K protein is related to the breast cancer. However, existing inhibitor effect has not achieved the desired effect in cancer therapy. Proteolysis target chimeric (PROTAC) technology is uses proteasome to degrade target protein to achieve the purpose of inhibiting tumour cell growth. Here, we reported that the use of PROTAC strategy in combining with star eEF2K inhibitor A484954 and its potential derivatives. Consequently, candidate compound 11l was found to degrade eEF2K and induce apoptosis in human breast carcinoma MDA-MB-231 cells. Together, these findings demonstrate that our eEF2K-targeting PROTAC small molecule would be a potential new strategy for future breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Quinase do Fator 2 de Elongação/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Humanos
19.
Fitoterapia ; 142: 104490, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32017968

RESUMO

Privileged structures are widely used in the process of drug design, and provide an effective template in medicinal chemistry. Diarylheptanoids are a class of structurally distinctive compounds with a wide variety of bioactivity, raising keenly interest in the past decades. Turmeric is a golden spice from the rhizome of the plant Curcuma longa, used for food preparations and giving color since ancient times. Curcumin, obtained from turmeric, has showed widely biological abilities with low toxicity in recent studied. Thus, a spice originally common in the kitchen has recently broadened its application to the clinic. This review aims to highlight diarylheptanoid as a privileged scaffold in drug discovery. In this review, we summarized diverse biological and pharmacological effects of diarylheptanoids and explored the therapeutic application and development of diet based on their structure.


Assuntos
Diarileptanoides/química , Diarileptanoides/farmacologia , Curcuma/química , Descoberta de Drogas
20.
Theranostics ; 10(18): 8080-8097, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724459

RESUMO

Background: Triple-negative breast cancer (TNBC) is one of the most prevalent neoplastic diseases worldwide, but efficacious treatments for this pathological condition are still challenging. The lack of an effective targeted therapy also leads to a poor prognosis for patients affected by TNBC. In the present study, we repurposed the distinctive inhibitory effects of flubendazole, a traditional anthelmintic drug, towards the putative modulation of proliferation and migration of TNBC in vitro and in vivo. Methods: According to a series of experimental approaches, including immunofluorescence (IF), immunoblotting (IB), siRNA and GFP-mRFP-LC3 plasmid transfection, respectively, we have found that flubendazole is capable of inducing autophagic cell death and apoptosis, thus exerting some anti-proliferative and anti-migration activity in TNBC cells. The therapeutic effects of flubendazole were evaluated by xenograft mouse models, followed by immunohistochemistry (IHC), IF and IB. Changes in the gene expression profiles of flubendazole-treated TNBC cells were analyzed by RNA sequencing (RNA-seq) and validated by IB. The potential binding mode of flubendazole and EVA1A was predicted by molecular docking and demonstrated by site-directed mutagenesis. Results: We have presently found that flubendazole exhibits a considerable anti-proliferative activity in vitro and in vivo. Mechanistically, the induction of autophagic cell death appears to be pivotal for flubendazole-mediated growth inhibition of TNBC cells, whereas blocking autophagy was able to improve the survival rate and migration ability of flubendazole-treated TNBC cells. Specifically, RNA-seq analysis showed that flubendazole treatment could promote the up-regulation of EVA1A. Flubendazole may regulate autophagy and apoptosis by targeting EVA1A, thus affecting the mechanisms of TNBC proliferation and migration. Furthermore, Thr113 may be the key amino acid residues for the binding of flubendazole to EVA1A. Conclusion: Our results provide novel insights towards the putative anti-cancer efficacy of flubendazole. Furthermore, here we show that flubendazole could serve as a potential therapeutic drug in TNBC. Altogether, this study highlights the possibility of this repurposed autophagic inducer for future cancer treatments.


Assuntos
Autofagia/efeitos dos fármacos , Mebendazol/análogos & derivados , Proteínas de Membrana/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Reposicionamento de Medicamentos , Feminino , Humanos , Mebendazol/farmacologia , Mebendazol/uso terapêutico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , RNA-Seq , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa