RESUMO
The adaptor CARD9 functions downstream of C-type lectin receptors (CLRs) for the sensing of microbial infection, which leads to responses by the TH1 and TH17 subsets of helper T cells. The single-nucleotide polymorphism rs4077515 at CARD9 in the human genome, which results in the substitution S12N (CARD9S12N), is associated with several autoimmune diseases. However, the function of CARD9S12N has remained unknown. Here we generated CARD9S12N knock-in mice and found that CARD9S12N facilitated the induction of type 2 immune responses after engagement of CLRs. Mechanistically, CARD9S12N mediated CLR-induced activation of the non-canonical transcription factor NF-κB subunit RelB, which initiated production of the cytokine IL-5 in alveolar macrophages for the recruitment of eosinophils to drive TH2 cell-mediated allergic responses. We identified the homozygous CARD9 mutation encoding S12N in patients with allergic bronchopulmonary aspergillosis and revealed activation of RelB and production of IL-5 in peripheral blood mononuclear cells from these patients. Our study provides genetic and functional evidence demonstrating that CARD9S12N can turn alveolar macrophages into IL-5-producing cells and facilitates TH2 cell-mediated pathologic responses.
Assuntos
Aspergilose Broncopulmonar Alérgica/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Interleucina-5/biossíntese , Macrófagos Alveolares/imunologia , Células Th2/imunologia , Animais , Aspergilose Broncopulmonar Alérgica/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Humanos , Interleucina-5/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/imunologiaRESUMO
Genetic mutations of CARD14 (encoding CARMA2) are observed in psoriasis patients. Here we showed that Card14E138A/+ and Card14ΔQ136/+ mice developed spontaneous psoriasis-like skin inflammation, which resulted from constitutively activated CARMA2 via self-aggregation leading to the enhanced activation of the IL-23-IL-17A cytokine axis. Card14-/- mice displayed attenuated skin inflammation in the imiquimod-induced psoriasis model due to impaired IL-17A signaling in keratinocytes. CARMA2, mainly expressed in keratinocytes, associates with the ACT1-TRAF6 signaling complex and mediates IL-17A-induced NF-κB and MAPK signaling pathway activation, which leads to expression of pro-inflammatory factors. Thus, CARMA2 serves as a key mediator of IL-17A signaling and its constitutive activation in keratinocytes leads to the onset of psoriasis, which indicates an important role of NF-κB activation in keratinocytes in psoriatic initiation.
Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Dermatite/genética , Mutação com Ganho de Função , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Interleucina-17/metabolismo , Queratinócitos/metabolismo , Psoríase/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/deficiência , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Dermatite/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Guanilato Quinases/química , Guanilato Quinases/deficiência , Células HEK293 , Humanos , Imiquimode , Queratinócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Psoríase/induzido quimicamente , Psoríase/fisiopatologia , Transdução de Sinais , Subpopulações de Linfócitos T/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismoRESUMO
The adaptor protein CARD9 links detection of fungi by surface receptors to the activation of the NF-κB pathway. Mice deficient in CARD9 exhibit dysbiosis and are more susceptible to colitis. Here we examined the impact of Card9 deficiency in the development of colitis-associated colon cancer (CAC). Treatment of Card9-/- mice with AOM-DSS resulted in increased tumor loads as compared to WT mice and in the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissue. The impaired fungicidal functions of Card9-/- macrophages led to increased fungal loads and variation in the overall composition of the intestinal mycobiota, with a notable increase in C. tropicalis. Bone marrow cells incubated with C. tropicalis exhibited MDSC features and suppressive functions. Fluconazole treatment suppressed CAC in Card9-/- mice and was associated with decreased MDSC accumulation. The frequency of MDSCs in tumor tissues of colon cancer patients correlated positively with fungal burden, pointing to the relevance of this regulatory axis in human disease.
Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Colite/imunologia , Neoplasias do Colo/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Células Supressoras Mieloides/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Colite/induzido quimicamente , Colite/genética , Neoplasias do Colo/genética , Disbiose/genética , Humanos , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/microbiologia , Regiões Promotoras Genéticas/genéticaRESUMO
We have determined in mice the minimum composition required for forming a vaccine adjuvant that stimulates a regulatory T (Treg) cell response to immunization, and we named the adjuvant "complete tolerogenic adjuvant." This new kind of adjuvant may let us use the well-proven "Ag with adjuvant" form of immunization for inducing Treg cell-mediated Ag-specific immunosuppression. The minimum composition consists of dexamethasone, rapamycin, and monophosphoryl lipid A at a mass ratio of 8:20:3. By dissecting the respective role of each of these components during immunization, we have further shown why immunosuppressive and immunogenic agents are both needed for forming true adjuvants for Treg cells. This finding may guide the design of additional, and potentially more potent, complete tolerogenic adjuvants with which we may form numerous novel vaccines for treating immune diseases.
Assuntos
Linfócitos T Reguladores , Vacinas , Camundongos , Animais , Imunização , Adjuvantes Imunológicos/farmacologia , ImunossupressoresRESUMO
Mutations in the master hematopoietic transcription factor GATA1 are often associated with functional defects in erythropoiesis and megakaryopoiesis. In this study, we identified a novel GATA1 germline mutation (c.1162delGG, p.Leu387Leufs*62) in a patient with congenital anemia and occasional thrombocytopenia. The C-terminal GATA1, a rarely studied mutational region, undergoes frameshifting translation as a consequence of this double-base deletion mutation. To investigate the specific function and pathogenic mechanism of this mutant, in vitro mutant models of stable re-expression cells were generated. The mutation was subsequently validated to cause diminished transcriptional activity of GATA1 and defective differentiation of erythroid and megakaryocytes. Using proximity labeling and mass spectrometry, we identified selective alterations in the proximal protein networks of the mutant, revealing decreased binding to a set of normal GATA1-interaction proteins, including the essential co-factor FOG1. Notably, our findings further demonstrated enhanced recruitment of the protein arginine methyltransferase PRMT6, which mediates histone modification at H3R2me2a and represses transcription activity. We also found an enhanced binding of this mutant GATA1/PRMT6 complex to the transcriptional regulatory elements of GATA1's target genes. Moreover, treatment of the PRMT6 inhibitor MS023 could partially rescue the inhibited transcriptional and impaired erythroid differentiation caused by the GATA1 mutation. Taken together, our results provide molecular insights into erythropoiesis in which mutation leads to partial loss of GATA1 function, and the role of PRMT6 and its inhibitor MS023 in congenital anemia, highlighting PRMT6 binding as a negative factor of GATA1 transcriptional activity in aberrant hematopoiesis.
Assuntos
Fator de Transcrição GATA1 , Mutação em Linhagem Germinativa , Ligação Proteica , Proteína-Arginina N-Metiltransferases , Humanos , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Diferenciação Celular/genética , Eritropoese/genética , Masculino , Feminino , Anemia/genéticaRESUMO
In this work, we have proposed to implement a zero-index material (ZIM) to control the in-plane emission of planar random optical modes while maintaining the intrinsic disordered features. Light propagating through a medium with near-zero effective refractive index accumulates little phase change and is guided to the direction determined by the conservation law of momentum. By enclosing a disordered structure with a ZIM based on all-dielectric photonic crystal (PhC), broadband emission directionality improvement can be obtained. We find the maximum output directionality enhancement factor reaches 30, around 6-fold increase compared to that of the random mode without ZIM. The minimum divergence angle is â¼6° for single random optical mode and can be further reduced to â¼3.5° for incoherent multimode superposition in the far field. Despite the significant directionality enhancement, the random properties are well preserved, and the Q factors are even slightly improved. The method is robust and can be effectively applied to the disordered medium with different structural parameters, e.g., the filling fraction of scatterers, and different disordered structure designs with extended or strongly localized modes. The output direction of random optical modes can also be altered by further tailoring the boundary of ZIM. This work provides a novel and universal method to manipulate the in-plane emission direction as well as the directionality of disordered medium like random lasers, which might enable its on-chip integration with other functional devices.
RESUMO
Due to the unprecedented wavefront shaping capability, the metasurface has demonstrated state-of-the-art performances in various applications, especially in printing and holography. Recently, these two functions have been combined into a single metasurface chip to achieve a capability expansion. Despite the progress, current dual-mode metasurfaces are realized at the expense of an increase in the difficulty of the fabrication, reduction of the pixel resolution, or strict limitation in the illumination conditions. Inspired by the Jacobi-Anger expansion, a phase-assisted paradigm, called Bessel metasurface, has been proposed for simultaneous printing and holography. By elaborately arranging the orientations of the single-sized nanostructures with geometric phase modulation, the Bessel metasurface can not only encode a greyscale printing image in real space but can reconstruct a holographic image in k-space. With the merits of compactness, easy fabrication, convenient observation, and liberation of the illumination conditions, the design paradigm of the Bessel metasurface would have promising prospects in practical applications, including optical information storage, 3D stereoscopic displays, multifunctional optical devices, etc.
RESUMO
BACKGROUNDS: Although several studies on mutant p53 reported cancer-promoting activities via "gain-of-function", the mechanism underlying these differences in function between p53 R175H, R175P, and p53 wild-type (WT) remains unclear. METHODS: Linking miniTurbo with p53 WT, R175H, and R175P, the expression of fusion and biotinylated proteins were assessed by Western blotting. The function and subcellular localization of fusion proteins were detected by apoptosis assay and immunofluorescence, respectively. Biotinylated proteins were analyzed by liquid chromatography-tandem mass spectrometry, followed by bioinformatics analysis. Small-scale pull-downs and Co-Immunoprecipitation were performed to validate the interaction between mutant or p53 WT and biotinylated proteins. RESULTS: The fusion protein's cellular localization and function were consistent with those of previous studies on the corresponding p53. Comparative profiles of R175H versus WT showed that most of the interacting proteins belonged to the intracellular organelle lumen, and the pathways involved were metabolism and genetic information processing. Comparative profiles of R175P versus WT suggested that the majority of the interacting proteins belonged to the intracellular organelle lumen and the extracellular membrane-bounded organelle, and the pathways involved were metabolism and genetic information processing pathways. The comparison between R175H and R175P revealed that most interacting proteins belonged to the organelle lumen, and pathways involved were genetic information processing pathways. Finally, the mutation of p53 significantly altered the interaction with the target proteins were confirmed. CONCLUSION: We verified the reliability of the miniTurbo system and obtained candidate targets of mutant p53, which provided new thoughts on the mechanism of mutant p53 gain-of-function and new potential targets for cancer therapy.
Assuntos
Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Proteínas Mutantes/metabolismo , Mutação , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Serum response factor (SRF) cooperates with various co-factors to manage the specification of diverse cell lineages during heart development. Many microRNAs mediate the function of SRF in this process. However, how are miR210 and miR30c involved in the decision of cardiac cell fates remains to be explored. In this study, we found that SRF directly controlled the cardiac expression of miR210. Both miR210 and miR30c blocked the formation of beating cardiomyocyte during embryoid body (EB) differentiation, a cellular model widely used for studying cardiogenesis. Both of anticipated microRNA targets and differentially expressed genes in day8 EBs were systematically determined and enriched with gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and Reactome. Functional enrichments of prediction microRNA targets and down-regulated genes in day8 EBs of miR210 suggested the importance of PI3K-Akt signal and ETS2 in miR210 inhibition of cardiomyocyte differentiation. Similar analyses revealed that miR30c repressed both developmental progress and the adrenergic signaling in cardiomyocytes during the differentiation of EBs. Taken together, SRF directs the expression of miR210 and miR30c, and they repress cardiac development via inhibiting the differentiation of cardiac muscle cell lineage as well as the cell proliferation. Through the regulation of specific microRNAs, the complication of SRF's function in heart development is emphasized.
Assuntos
Corpos Embrioides , MicroRNAs , Diferenciação Celular/genética , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismoRESUMO
By virtue of the unprecedented ability of manipulating the optical parameters, metasurfaces open up a new avenue for realizing ultra-compact image displays, e.g., nanoprinting on the surface and holographic displaying in the far-field. The multifold integration of these two functions into a single metasurface can undoubtedly expand the functionality and increase the information capacity. In this study, a minimalist tri-channel metasurface is proposed and experimentally demonstrated with multifold integration of printed and holographic displaying, which can generate two N-bit grayscale images and a four-step holographic image simultaneously. Benefiting from exploiting the degeneracy of energy allocation and the degeneracy of nanostructure orientations, the functionalities of nanoprinting and holography are combined without the need of a large amount of nanostructures with varied dimensions, which would facilitate both the metasurface design and fabrication. The proposed scheme provides a new idea in enhancing the functionality and capacity of metasurfaces without complicating their design, which has promising prospects for applications in ultra-compact image displays, high-density optical storage, optical anti-counterfeiting and many other related fields.
RESUMO
Featuring with ultracompactness and subwavelength resolution, metasurface-assisted nanoprinting has been widely researched as an optical device for image display. It also provides a platform for information multiplexing, and a series of multiplexed works based on incident polarizations, operating wavelengths and observation angles have emerged. However, the angular-multiplexing nanoprinting is realized at the cost of image resolution reduction or the increase of fabrication difficulty, hindering its practical applications. Here, inspired by the Jacobi-Anger expansion, a phase-assisted design paradigm, called Bessel metasurface, was proposed for angular multiplexing nanoprinting. By elaborately designing the phase distribution of the Bessel metasurface, the target images can be encoded into the desired observation angles, reaching angular multiplexing. With the merits of ultracompactness and easy fabrication, we believe that our design strategy would be attractive in the real-world applications, including optical information storage, encryption/concealment, multifunctional switchable optical devices, and 3D stereoscopic displays, etc.
RESUMO
Structural-color nanoprinting, which can generate vivid colors with spatial resolution at subwavelength level, possesses potential market in optical anticounterfeiting and information encryption. Herein, we propose an ultracompact metasurface with a single-cell design strategy to establish three independent information channels for simultaneous watermarked structural-color nanoprinting and holographic imaging. Dual-channel spectrum manipulation and single-channel phase manipulation are combined together by elaborately introducing the orientation degeneracy into the design of variable dielectric nanobricks. Hence, a structural-color nanoprinting image covered with polarization-dependent watermarks and a holographic image can be respectively generated under different decoded environments. The proposed metasurface shows a flexible method for tri-channel image display with high information capacity, and exhibits dual-mode anticounterfeiting with double safeguards, i.e., polarization-controlled watermarks and a far-field holographic image. This study provides a feasible route to develop multifunctional metasurfaces for applications including optical anticounterfeiting, information encryption and security, information multiplexing, etc.
RESUMO
Metasurface-based structural-colors are usually implemented by changing the dimensions of nanostructures to produce different spectral responses. Therefore, a single-size nanostructured metasurface usually cannot display structural-colors since it has only one design degree of freedom (DOF), i.e., the orientation angles of nanostructures. Here, we show structural-color nanoprinting images can be generated with a single-size nanostructured metasurface, enabled by designing the anisotropic nanostructure with different spectral responses along its long- and short-axis directions, respectively. More interestingly, the concept of orientation degeneracy of nanostructures can be applied in the metasurface design, which shows two spectral modulations can be implemented under different polarization directions of output light, thus extending the color-nanoprinting from single-channel to dual-channel. The proposed dual-channel metasurface used for anticounterfeiting color-nanoprinting has presented the advantages of ultra-compactness, high information capacity, and vivid colors, which can develop broad applications in fields such as high-end anticounterfeiting, high-density information storage, optical encryption, etc.
RESUMO
Extracellular high-mobility group box 1 (HMGB1) is a prototypic damage-associated molecular pattern. Although a homeostatic level of extracellular HMGB1 may be beneficial for immune defense, tissue repair, and tissue regeneration, excessive HMGB1 is linked to inflammatory diseases. This prompts an intriguing question: how does a healthy body control the level of extracellular HMGB1? In this study, in the plasma of both healthy humans and healthy mice, we have identified an anti-HMGB1 IgM autoantibody that neutralizes extracellular HMGB1 via binding specifically to a 100% conserved epitope, namely HMW4 (HMGB198-112). In mice, this anti-HMW4 IgM is produced by peritoneal B-1 cells, and concomitant triggering of their BCR and TLR4 by extracellular HMGB1 stimulates the production of anti-HMW4 IgM. The ability of extracellular HMGB1 to induce its own neutralizing Ab suggests a feedback loop limiting the level of this damage-associated molecular pattern in a healthy body.
Assuntos
Anticorpos Neutralizantes/sangue , Autoanticorpos/sangue , Subpopulações de Linfócitos B/imunologia , Epitopos/imunologia , Proteína HMGB1/imunologia , Imunoglobulina M/sangue , Adulto , Animais , Apolipoproteínas E/genética , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto JovemRESUMO
As two independent optical sub-fields, diffraction optics and plasmonics both have been used for wavefront shaping and beam steering. However, the two separate concepts have always been developing as two parallel directions, which have not met for studying their structural hybridization to discover new potentials. For instance of the flat metasurfaces, even though the geometric parameters including shape, size, and periodicity have been studied, it remains mostly unexplored for the 3D spatial height variation. Here, a new type of all-metallic 3D meta-prism is proposed and experimentally demonstrated by hybridizing the localized surface plasmonic resonances (LSPR) and the blazed grating diffraction, which enables strong polarization-dependent behaviors to steer broadband visible light to drastically inverse directions. The nanofabrication of 3D meta-prism is achieved by nanostencil lithography with electron-beam evaporation. Such meta-prism could also enable to split different visible light (green, blue, and red) with high-efficiency contrast (≈10). By the mirror-symmetry arrangement, a multifunctional surface is demonstrated with polarization-/wavelength-multiplexing wavefront-shaping functions (concave, convex, or flat mirror). This unique 3D meta-prism enjoys great simplicity and versatility in broadband beam steering through the incorporation of plasmonic and diffractive effects and can be utilized in various applications including dichroic-prism splitters, multifunctional meta-mirrors, etc.
RESUMO
Conventional three-dimensional (3D) holography based on recording interference fringes on a photosensitive material usually has unavoidable zero-order light, which merges with the holographic image and blurs it. Off-axis design is an effective approach to avoid this problem; however, it in turn leads to the waste of at least half of the imaging space for holographic reconstruction. Herein, we propose an on-axis 3D holography based on Malus-assisted metasurfaces, which can eliminate the zero-order light and project the holographic image in the full transmission space. Specifically, each nanostructure in the metasurface acts as a nano-polarizer, which can modulate the polarization-assisted amplitude of incident light continuously, governed by Malus law. By carefully choosing the orientation angles of nano-polarizers, the amplitude can be both positive and negative, which can be employed to extinct zero-order light without affecting the intensity modulation for holographic recording. We experimentally demonstrate this concept by projecting an on-axis 3-layer holographic images in the imaging space and all experimental results agree well with our prediction. Our proposed metasurface carries unique characteristics such as ultracompactness, on-axis reconstruction, extinction of zero-order light and broadband response, which can find its market in ultracompact and high-density holographic recording for 3D objects.
RESUMO
Conventional metasurface holography is usually implemented in either transmission space or reflection space. Herein, we show a dielectric metasurface that can simultaneously project two independent holographic images in the transmission and reflection spaces, respectively, merely with a single-layer design approach. Specifically, two types of dielectric nanobricks in a nanostructured metasurface are employed to act as half-wave plates for geometric phase modulation. One type of nanobrick is designed to reflect most of incident circularly-polarized light into reflection space, enabled with magnetic resonance, while another type of nanobrick transmits it into transmission space, without resonance involved. By controlling the orientation angles and randomly interleaving the two types of nanobricks to form a metasurface, a full-space metasurface hologram can be established. We experimentally demonstrate this trans-reflective meta-holography by encoding the geometric phase information of two independent images into a single metasurface, and all observed holographic images agree well with our predictions. Our research expands the field-of-view of metasurface holography from half- to full-space, which can find its markets in optical sensing, image displays, optical storages and many other potential applications.
RESUMO
Metasurface based polarization multiplexing is usually conducted in two orthogonal-polarization states, e.g., linearly polarized along x/y axes, left/right-handed circularly polarized states, etc. Herein, we show metasurfaces can be employed to implement tri-channel polarization multiplexing in three non-orthogonal-polarization states, merely with a single-size nanostructure design approach. Specifically, nanostructured metasurfaces acting as nano-polarizer arrays can modulate the incident light intensity pixel-by-pixel by controlling the orientation angles of nanostructures, governed by Malus's law. Hence, by inserting a metasurface between a bulk-optic polarizer and an analyzer, and elaborately controlling their polarization combinations, we show that the Malus-assisted metasurface can simultaneously record a continuous gray-image and two independent binary-patterns in three different information channels. We experimentally demonstrate this concept by recording three independent gray-images right at the metasurface surface. With the advantages of high information density, high security, high compatibility and ultracompactness, the proposed gray-imaging meta-device can play a significant role in the field of optical storage, anti-counterfeiting, and information multiplexing, etc.
RESUMO
Nanostructured metasurfaces applied in structural-color nanoprinting and holography have been extensively investigated in the past several years. Recently, merging them together is becoming an emerging approach to improve the information capacity and functionality of metasurfaces. However, current approaches, e.g., segmenting, interleaving and stacking schemes for function merging, suffer from crosstalk, low information density, design and fabrication difficulties. Herein, we employ a single-celled approach to design and experimentally demonstrate a high-density multifunctional metasurface merging nanoprinting and holography, i.e., each nanostructure in the metasurface can simultaneously manipulate the spectra (enabled with varied dimensions of nanostructures) and geometric phase (enabled with varied orientation angles of nanostructures) of incident light. Hence, with different decoding strategies, a structural-color nanoprinting image emerges right at the metasurface plane under white light illumination, while a holographic image is reconstructed in the Fraunhofer diffraction zone under circularly polarized laser light incidence. And the two images have no crosstalk since they are independently designed and presented at different distances. Our proposal suggests a space-multiplexing scheme to develop advanced metasurfaces and one can find their markets in high-density information storage, optical information encryption, multi-channel image display, etc.
RESUMO
Geometric metasurfaces, governed by PB phase, have shown their strong polarization sensitivity and can generate opposite phase delay when the handedness of incident circularly-polarized (CP) light is opposite. Here, we show this interesting characteristic can be employed to generate asymmetric forward and backward propagation with the same incident left- or right-handed CP light, which is hard to achieve with conventional optical elements and devices. Specifically, with the modified holographic design algorithm to consider both forward and backward CP light, an asymmetric meta-hologram is designed, which can project two different holographic images in the forward and backward directions, respectively. We demonstrate this concept by fabricating an asymmetric hologram with a single-size nanostructured metasurface, and the experimentally obtained holographic images in both directions have shown their advantages of high fidelity, broadband response and low crosstalk. The proposed asymmetric metasurface can play an important role in data storages, anti-counterfeitings, optical communications, displays and many other related fields.