RESUMO
The epigenetic process of RNA-directed DNA methylation (RdDM) regulates the expression of genes and transposons. However, little is known about the involvement of RdDM in the response of maize (Zea mays) to salt stress. Here, we isolated a salt-sensitive maize mutant and cloned the underlying gene, which encodes KOW DOMAIN-CONTAINING TRANSCRIPTION FACTOR1 (KTF1), an essential component of the RdDM pathway. Evolutionary analysis identified two homologs of KTF1 (ZmKTF1A and ZmKTF1B) with highly similar expression patterns. Whole-genome bisulfite sequencing revealed that mutations in ZmKTF1 substantially decrease genome-wide CHH (H = A, C, or T) methylation levels. Moreover, our findings suggest that ZmKTF1-mediated DNA methylation regulates the expression of multiple key genes involved in oxidoreductase activity upon exposure to salt, concomitant with increased levels of reactive oxygen species. In addition, insertion-deletion mutations (InDels) in the promoter of ZmKTF1 affect its expression, thereby altering Na+ concentrations in seedlings in a natural maize population. Therefore, ZmKTF1 might represent an untapped epigenetic resource for improving salt tolerance in maize. Overall, our work demonstrates the critical role of ZmKTF1 involved in the RdDM pathway in maize salt tolerance.
RESUMO
INTRODUCTION: Arterial calcification, an independent predictor of cardiovascular events, increases morbidity and mortality in patients with diabetes mellitus (DM), but its mechanisms remain unclear. Extracellular vesicles (EVs) play an important role in intercellular communication. The study investigates the role and potential mechanisms of EVs derived from endothelial cells (ECs) in regulating vascular smooth muscle cell (VSMC) calcification under high glucose (HG) condition, with a goal of developing effective prevention and treatment strategies for diabetic arterial calcification. RESULTS: The results showed that EVs derived from HG induced ECs (ECHG-EVs) exhibited a bilayer structure morphology with a mean diameter of 74.08 ± 31.78 nm, expressing EVs markers including CD9, CD63 and TSG101, but not express calnexin. ECHG-EVs was internalized by VSMCs and induced VSMC calcification by increasing Runx2 expression and mineralized nodule formation. The circ_0008362 was enriched in ECHG-EVs, and it can be transmitted to VSMCs to promote VSMC calcification both in vitro and in vivo. Mechanistically, miR-1251-5p might be one of the targets of circ_0008362 and they were co-localization in the cytoplasm of VSMCs. Runx2 was identified as the downstream target of miR-1251-5p, and circ_0008362 acted as a sponge, enhancing Runx2 expression and then promoted VSMC calcification. Besides, circ_0008362 could directly interact with Runx2 to aggravate VSMC calcification. Notably, DiR-labelled ECHG-EVs was detected in the vessels of mice. Meanwhile, the level of circ_0008362 and Runx2 were increased significantly, while the expression of miR-1251-5p was decreased significantly in calcified artery tissues of mice. However, inhibiting the release of EVs by GW4869 attenuated arterial calcification in diabetic mice. Finally, the level of circulation of plasma EVs circ_0008362 was significantly higher in patients with DM compared with normal controls. Elevated levels of plasma EVs circ_0008362 were associated with more severe coronary and aorta artery calcification in patients with DM. CONCLUSIONS: Our findings suggested that circ_0008362 was enriched in EVs derived from ECs and promoted VSMC calcification under HG conditions, both by sponging miR-1251-5p to upregulate Runx2 expression and through direct interaction with Runx2. Furthermore, elevated levels of plasma EVs circ_0008362 were associated with more severe coronary and aorta artery calcification in patients with DM. These results may serve as a potential prevention and therapeutic target for diabetic arterial calcification.
Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Angiopatias Diabéticas , Células Endoteliais , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Transdução de Sinais , Calcificação Vascular , Animais , Humanos , Masculino , Camundongos , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/etiologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , RNA Circular/metabolismo , RNA Circular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcificação Vascular/genéticaRESUMO
BACKGROUND: Visceral adipose tissue in individuals with obesity is an independent cardiovascular risk indicator. However, it remains unclear whether adipose tissue influences common cardiovascular diseases, such as atherosclerosis, through its secreted exosomes. METHODS: The exosomes secreted by adipose tissue from diet-induced obesity mice were isolated to examine their impact on the progression of atherosclerosis and the associated mechanism. Endothelial apoptosis and the proliferation and migration of vascular smooth muscle cells (VSMCs) within the atherosclerotic plaque were evaluated. Statistical significance was analyzed using GraphPad Prism 9.0 with appropriate statistical tests. RESULTS: We demonstrate that adipose tissue-derived exosomes (AT-EX) exacerbate atherosclerosis progression by promoting endothelial apoptosis, proliferation, and migration of VSMCs within the plaque in vivo. MicroRNA-132/212 (miR-132/212) was detected within AT-EX cargo. Mechanistically, miR-132/212-enriched AT-EX exacerbates palmitate acid-induced endothelial apoptosis via targeting G protein subunit alpha 12 and enhances platelet-derived growth factor type BB-induced VSMC proliferation and migration by targeting phosphatase and tensin homolog in vitro. Importantly, melatonin decreases exosomal miR-132/212 levels, thereby mitigating the pro-atherosclerotic impact of AT-EX. CONCLUSION: These data uncover the pathological mechanism by which adipose tissue-derived exosomes regulate the progression of atherosclerosis and identify miR-132/212 as potential diagnostic and therapeutic targets for atherosclerosis.
Assuntos
Apoptose , Aterosclerose , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Exossomos , Camundongos Endogâmicos C57BL , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Placa Aterosclerótica , Animais , Humanos , Masculino , Camundongos , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/genética , Apoptose/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Becaplermina/farmacologia , Becaplermina/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/patologia , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Camundongos Knockout para ApoE , MicroRNAs/metabolismo , MicroRNAs/genética , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/patologia , Transdução de SinaisRESUMO
New mosquito repellent products (NMRPs) are emerging popular repellents among children. There are increasing reports on children's sensitization reactions caused by NMRPs, while regulations on their productions, sales, or usage are still lacking. One of the reasons could be the missing comprehensive risk assessment. We first conducted a nationwide investigation on children's NMRP usage preferences. Then, we high-throughput screened volatile or semivolatile organic chemicals (VOCs/SVOCs) in five representative NMRPs by the headspace gas chromatography-orbitrap high-resolution mass spectrometry analytical method. After that, toxic compounds were recognized based on the toxicity forecaster (ToxCast) database. A total of 277 VOCs/SVOCs were recognized, and 70 of them were identified as toxic compounds. In a combination of concentrations, toxicities, absorption, distribution, metabolism, and excretion characteristics in the body, 28 chemicals were finally proposed as priority-controlled compounds in NMRPs. Exposure risks of recognized toxic chemicals through NMRPs by inhalation and dermal intake for children across the country were also assessed. Average daily intakes were in the range of 0.20-7.31 mg/kg/day for children in different provinces, and the children in southeastern coastal provinces were found to face higher exposure risks. By controlling the high-priority chemicals, the risks were expected to be reduced by about 46.8% on average. Results of this study are therefore believed to evaluate exposure risks, encourage safe production, and promote reasonable management of NMRPs.
Assuntos
Repelentes de Insetos , Compostos Orgânicos Voláteis , Criança , Humanos , Medição de Risco , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidadeRESUMO
Incineration is a promising sustainable treatment method for solid waste. However, the ongoing revelation of new toxic pollutants in this process has become a controversial issue impeding its development. Thus, identifying and regulating high-risk pollutants emerge as pivotal strides toward reconciling this debate. In this study, we proposed a workflow aimed at establishing priority monitoring inventories for organic compounds emitted by industries involving full-component structural recognition, environmental behavior prediction, and emission risk assessment, specifically focusing on solid waste incineration (SWI). A total of 174 stack gas samples from 29 incinerators were first collected. Nontarget full organic recognition technology was then deployed to analyze these samples, and 646 organic compounds were identified. The characteristics, i.e., toxicity effects, toxicity concentrations, persistence, and bioaccumulation potential, of these compounds were assessed and ranked based on the TOXCAST database from the US Environmental Protection Agency and structural effect models. Combined with consideration of changes in seasons and waste types, a priority control inventory consisting of 28 organic pollutants was finally proposed. The risks associated with SWI across different regions in China and various countries were assessed, and results pinpointed that by controlling the priority pollutants, the average global emission risk attributed to SWI was anticipated to be reduced by 71.4%. These findings offer significant guidance for decision-making in industrial pollutant management, emphasizing the importance of targeted regulation and monitoring to enhance the sustainability and safety of incineration processes.
Assuntos
Incineração , Resíduos Sólidos , Monitoramento Ambiental , Medição de Risco , Compostos Orgânicos , ChinaRESUMO
The Paris Agreement and the Minamata Convention on Mercury are two of the most important environmental conventions being implemented concurrently, with a focus on reducing carbon and mercury emissions, respectively. The relation between mercury and carbon influences the interactions and outcomes of these two conventions. This perspective investigates the link between mercury and CO2, assessing the consequences and exploring the policy implications of this link. We present scientific evidence showing that mercury and CO2 levels are negatively correlated under natural conditions. As a result of this negative correlation, the CO2 level under the current mercury reduction scenario is predicted to be 2.4-10.1 ppm higher than the no action scenario by 2050, equivalent to 1.0-4.8 years of CO2 increase due to human activity. The underlying causations of this negative correlation are complex and need further research. Economic analysis indicates that there is a trade-off between the benefits and costs of mercury reduction actions. As reducing mercury emission may inadvertently undermine efforts to achieve climate goals, we advocate for devising a coordinated implementation strategy for carbon and mercury conventions to maximize synergies and reduce trade-offs.
Assuntos
Dióxido de Carbono , Mercúrio , Humanos , Mercúrio/análise , Políticas , ClimaRESUMO
Pollutants in human milk are critical for evaluating maternal internal exposure and infant external exposure. However, most studies have focused on a limited range of pollutants. Here, 15 pooled samples (prepared from 467 individual samples) of human milk from three areas of the Yangtze River Delta (YRD) in China were analyzed by gas chromatography quadrupole time-of-flight mass spectrometry. In total, 171 compounds of nine types were preliminarily identified. Among these, 16 compounds, including 2,5-di-tert-butylhydroquinone and 2-tert-butyl-1,4-benzoquinone, were detected in human milk for the first time. Partial least-squares discriminant analysis identified ten area-specific pollutants, including 2-naphthylamine, 9-fluorenone, 2-isopropylthianthrone, and benzo[a]pyrene, among pooled human milk samples from Shanghai (n = 3), Jiangsu Province (n = 6), and Zhejiang Province (n = 6). Risk index (RI) values were calculated and indicated that legacy polycyclic aromatic hydrocarbons (PAHs) contributed only 20% of the total RIs for the identified PAHs and derivatives, indicating that more attention should be paid to PAHs with various functional groups. Nine priority pollutants in human milk from the YRD were identified. The most important were 4-tert-amylphenol, caffeine, and 2,6-di-tert-butyl-p-benzoquinone, which are associated with apoptosis, oxidative stress, and other health hazards. The results improve our ability to assess the health risks posed by pollutants in human milk.
Assuntos
Leite Humano , Rios , Humanos , Leite Humano/química , China , Rios/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Feminino , Monitoramento Ambiental , Poluentes Ambientais/análise , Cromatografia Gasosa-Espectrometria de MassasRESUMO
Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.
Assuntos
Autofagia , Temperatura Baixa , Exossomos , Camundongos Endogâmicos C57BL , MicroRNAs , Osteogênese , Animais , Autofagia/efeitos dos fármacos , Camundongos , Exossomos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoporose/patologia , Diferenciação Celular/efeitos dos fármacos , Osso e Ossos/metabolismo , Feminino , Densidade Óssea , Sirolimo/farmacologiaRESUMO
BACKGROUND: Emerging evidence has shown the crucial roles of pleomorphic adenoma gene (PLAG) family genes in multiple cancers. However, their functions and mechanisms in pancreatic adenocarcinoma (PAAD) remain poorly understood. METHODS: We analyzed the expression levels of PLAG family genes in both The Cancer Genome Atlas (TCGA) database and a Gene Expression Omnibus (GEO) database, and confirmed the results in our three independent cohorts of 382 PAAD tissues and 362 adjacent nontumor pancreatic tissues. Integrated analyses were carried out to explore the function, mechanism and prognostic value of the selected PLAG family gene in PAAD patients. RESULTS: By analyzing the TCGA and GEO databases, PLAGL1 was identified to be downregulated in PAAD tissues, and its decreasing levels of both mRNA and protein were verified in our three independent PAAD cohorts. PLAGL1 expression was inversely correlated with clinicopathological factors including the Ki67+ cell rate and pathologic stage. Further GSEA of the TCGA-PAAD cohort demonstrated that multiple signaling pathways implicated in cell proliferation were enriched in the lower PLAGL1 expressing PAAD group. Moreover, we demonstrated that PLAGL1 expression was obviously negatively associated with patients' overall survival outcome in both the TCGA-PAAD cohort and our verification cohorts. Additionally, through MTS and BrdU assays, we further demonstrated in vitro that PLAGL1 had the impact of preventing the proliferation of pancreatic cancer cells. CONCLUSIONS: Our present study suggested that downregulated PLAGL1 might act as a biomarker in predicts poor prognosis and one of important factors in increasing cell proliferation in PAAD. This study provides us with a novel prognostic marker and therapeutic strategy for PAAD, which deserves further study.
Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Fatores de Transcrição , Proteínas Supressoras de Tumor , Humanos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Neoplasias PancreáticasRESUMO
Understanding the mechanisms through which persistent organic pollutants (POPs) form during combustion processes is critical for controlling emissions of POPs, but the mechanisms through which most POPs form are poorly understood. Polyhalogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs) are typical toxic POPs, and the formation mechanisms of PXDD/Fs are better understood than the mechanisms through which other POPs form. In this study, a framework for identifying detailed PXDD/Fs formation mechanisms was developed and reviewed. The latest laboratory studies in which organic free radical intermediates of PXDD/Fs have been detected in situ and isotope labeling methods have been used to trace transformation pathways were reviewed. These studies provided direct evidence for PXDD/Fs formation pathways. Quantum chemical calculations were performed to determine the rationality of proposed PXDD/Fs formation pathways involving different elementary reactions. Many field studies have been performed, and the PXDD/Fs congener patterns found were compared with PXDD/Fs congener patterns obtained in laboratory simulation studies and theoretical studies to mutually verify the dominant PXDD/Fs formation mechanisms. The integrated method involving laboratory simulation studies, theoretical calculations, and field studies described and reviewed here can be used to clarify the mechanisms involved in PXDD/Fs formation. This review brings together information about PXDD/Fs formation mechanisms and provides a methodological framework for investigating PXDD/Fs and other POPs formation mechanisms during combustion processes, which will help in the development of strategies for controlling POPs emissions.
Assuntos
Dioxinas , Poluentes Ambientais , Dibenzofuranos , Poluentes Ambientais/análise , Dibenzofuranos PolicloradosRESUMO
Ultraviolet (UV) filters are emerging contaminants that have been found in high concentrations in human tissues. Food intake is generally considered to be the primary route of human exposure to contaminants. In this study, 184 composite food samples, prepared from 4268 individual samples in eight categories collected from 23 Chinese provinces for the sixth Chinese total diet study, were analyzed. The total and median UV filter concentrations in food samples were 1.5-68.3 and 7.9 ng/g wet weight, respectively. The highest median concentrations were found in decreasing order in meat, cereals, and legumes. In total, 15 UV filters were analyzed. 2-Ethylhexyl salicylate, homosalate, and 2-ethylhexyl-4-methoxycinnamate were dominant and made median contributions of 34.1%, 22.6%, and 14.5%, respectively, and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol contributed the median of 0.03%, of the total UV filter concentrations. The estimated total daily UV filter intake in animal-origin foods and total UV filter concentration in human milk from the same province were significantly correlated (r = 0.44, p < 0.05). Predicted absorption, distribution, metabolism, and elimination properties led to 10 UV filters being prioritized as most likely to be retained in human tissues. The prioritization results and toxicity assessments indicated that octocrylene and 2-ethylhexyl-4-methoxycinnamate have stronger effects in vivo and therefore require more attention than others.
Assuntos
Fabaceae , Alimentos , Animais , Humanos , Cinamatos , DietaRESUMO
Chlorinated organic chemicals are produced and used extensively worldwide, and their risks to the biology and environment are of increasing concern. However, chlorinated byproducts [e.g., polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)] formed during the commercial manufacturing processes and present in organochlorine products are rarely reported. The knowledge on the occurrences and fate of unintentional persistent organic chemicals in the manufacturing of organochlorine chemical is necessary for accurate assessment of the risks of commercial chemicals and their production. Here, PCDD/Fs were tracked throughout chlorobenzene and chloroethylene production processes (from raw materials to final products) by target analysis. Other byproducts that can further transform into PCDD/Fs were also identified by performing non-target screening. As a result, the PCDD/F concentrations were mostly the highest in bottom residues, and the octachlorinated congeners were dominant. Alkali/water washing stages may cause the formation of oxygen-containing byproducts including PCDD/Fs and acyl-containing compounds, so more attention should be paid to these stages. PCDD/Fs were of 0.17 and 0.21-1.2 ng/mL in monochlorobenzene and chloroethylene products, respectively. Annual PCDD/F emissions (17 g toxic equivalent in 2018) during chlorobenzene and chloroethylene production were estimated using PCDD/F emission factors. The results can contribute to the improvement of PCDD/F inventories for the analyzed commercial chemicals.
Assuntos
Dibenzodioxinas Policloradas , Cloreto de Vinil , Dibenzofuranos/análise , Cloreto de Vinil/análise , Dibenzofuranos Policlorados/análise , Dibenzofuranos Policlorados/química , Monitoramento Ambiental , ClorobenzenosRESUMO
Chlorinated paraffins (CPs) are used in many products, including soft poly(vinyl chloride) curtains, which are used in many indoor environments. Health hazards posed by CPs in curtains are poorly understood. Here, chamber tests and an indoor fugacity model were used to predict CP emissions from soft poly(vinyl chloride) curtains, and dermal uptake through direct contact was assessed using surface wipes. Short-chain and medium-chain CPs accounted for 30% by weight of the curtains. Evaporation drives CP migration, like for other semivolatile organic plasticizers, at room temperature. The CP emission rate to air was 7.09 ng/(cm2 h), and the estimated short-chain and medium-chain CP concentrations were 583 and 95.3 ng/m3 in indoor air 21.2 and 172 µg/g in dust, respectively. Curtains could be important indoor sources of CPs to dust and air. The calculated total daily CP intakes from air and dust were 165 ng/(kg day) for an adult and 514 ng/(kg day) for a toddler, and an assessment of dermal intake through direct contact indicated that touching just once could increase intake by 274 µg. The results indicated that curtains, which are common in houses, could pose considerable health risks through inhalation of and dermal contact with CPs.
Assuntos
Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Clorados , Cloreto de Vinil , Exposição por Inalação/análise , Parafina/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/análise , Poeira/análise , ChinaRESUMO
Vascular calcification often occurs in patients with chronic renal failure (CRF), which significantly increases the incidence of cardiovascular events in CRF patients. Our previous studies identified the crosstalk between the endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and the paracrine effect of VSMCs, which regulate the calcification of VSMCs. Herein, we aim to investigate the effects of exosomes secreted by high phosphorus (HPi) -induced adventitial fibroblasts (AFs) on the calcification of VSMCs and the underlying mechanism, which will further elucidate the important role of AFs in high phosphorus vascular wall microenvironment. The conditioned medium of HPi-induced AFs promotes the calcification of VSMCs, which is partially abrogated by GW4869, a blocker of exosomes biogenesis or release. Exosomes secreted by high phosphorus-induced AFs (AFsHPi-Exos) show similar effects on VSMCs. miR-21-5p is enriched in AFsHPi-Exos, and miR-21-5p enhances osteoblast-like differentiation of VSMCs by downregulating cysteine-rich motor neuron 1 (Crim1) expression. AFsHPi-Exos and exosomes secreted by AFs with overexpression of miR-21-5p (AFsmiR21M-Exos) significantly accelerate vascular calcification in CRF mice. In general, AFsHPi-Exos promote the calcification of VSMCs and vascular calcification by delivering miR-21-5p to VSMCs and subsequently inhibiting the expression of Crim1. Combined with our previous studies, the present experiment supports the theory of vascular wall microenvironment.
Assuntos
Exossomos , MicroRNAs , Calcificação Vascular , Animais , Camundongos , Células Endoteliais , Fibroblastos , Fósforo , MicroRNAs/genética , Receptores de Proteínas Morfogenéticas ÓsseasRESUMO
Medial arterial calcification (MAC), a systemic vascular disease different from atherosclerosis, is associated with an increased incidence of cardiovascular events. Several studies have demonstrated that ambient temperature is one of the most important factors affecting cardiovascular events. However, there has been limited research on the effect of different ambient temperatures on MAC. In the present study, we showed that cold temperature exposure (CT) in mice slowed down the formation of vitamin D (VD)-induced vascular calcification compared with room temperature exposure (RT). To investigate the mechanism involved, we isolated plasma-derived exosomes from mice subjected to CT or RT for 30 days (CT-Exo or RT-Exo, respectively). Compared with RT-Exo, CT-Exo remarkably alleviated the calcification/senescence formation of vascular smooth muscle cells (VSMCs) and promoted autophagy by activating the phosphorylation of AMP-activated protein kinase (p-AMPK) and inhibiting phosphorylation of mammalian target of rapamycin (p-mTOR). At the same time, CT-Exo promoted autophagy in ß-glycerophosphate (ß-GP)-induced VSMCs. The number of autophagosomes and the expression of autophagy-related proteins ATG5 and LC3B increased, while the expression of p62 decreased. Based on a microRNA chip microarray assay and real-time polymerase chain reaction, miR-320a-3p was highly enriched in CT-Exo as well as thoracic aortic vessels in CT mice. miR-320a-3p downregulation in CT-Exo using AntagomiR-320a-3p inhibited autophagy and blunted its anti-calcification protective effect on VSMCs. Moreover, we identified that programmed cell death 4 (PDCD4) is a target of miR-320a-3p, and silencing PDCD4 increased autophagy and decreased calcification in VSMCs. Treatment with CT-Exo alleviated the formation of MAC in VD-treated mice, while these effects were partially reversed by GW4869. Furthermore, the anti-arterial calcification protective effects of CT-Exo were largely abolished by AntagomiR-320a-3p in VD-induced mice. In summary, we have highlighted that prolonged cold may be a good way to reduce the incidence of MAC. Specifically, miR-320a-3p from CT-Exo could protect against the initiation and progression of MAC via the AMPK/mTOR autophagy pathway.
Assuntos
Aterosclerose , MicroRNAs , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antagomirs , Serina-Treonina Quinases TOR , Autofagia , MicroRNAs/metabolismo , Mamíferos/genética , Mamíferos/metabolismoRESUMO
PURPOSE: The aim is to compare the pathogen detection performance of metagenomic next-generation sequencing (mNGS) and the culturing of percutaneous needle biopsy samples obtained from an individual with a suspected spinal infection. METHODS: A retrospective study of 141 individuals with a suspected spinal infection was conducted, and mNGS was performed. The microbial spectra and detection performance between mNGS and the culturing-based method were compared, and the effects of antibiotic intervention and biopsy on the detection performance were assessed. RESULTS: The microorganisms isolated most commonly via the culturing-based method were Mycobacterium tuberculosis (n = 21), followed by Staphylococcus epidermidis (n = 13). The most common microorganisms detected via mNGS were Mycobacterium tuberculosis complex (MTBC) (n = 39), followed by Staphylococcus aureus (n = 15). The difference in the type of detected microorganisms between culturing and mNGS was observed only in Mycobacterium (P = 0.001). mNGS helped identify potential pathogens in 80.9% of cases, which was significantly higher than the positivity rate of 59.6% observed for the culturing-based method (P < 0.001). Moreover, mNGS had a sensitivity of 85.7% (95% CI, 78.4% to 91.3%), a specificity of 86.7% (95% CI, 59.5% to 98.3%), and sensitivity gains of 35% (85.7% vs. 50.8%; P < 0.001) during culturing, while no differences were observed in the specificity (86.7% vs. 93.3%; P = 0.543). In addition, antibiotic interventions significantly lowered the positivity rate of the culturing-based method (66.0% vs. 45.5%, P = 0.021) but had no effects on the results of mNGS (82.5% vs. 77.3%, P = 0.467). CONCLUSION: The use of mNGS could result in a higher detection rate compared to that observed with the culturing-based method in an individual with spinal infection and is particularly valuable for evaluating the effects of a mycobacterial infection or previous antibiotic intervention.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis , Humanos , Estudos Retrospectivos , Antibacterianos , Biópsia , Mycobacterium tuberculosis/genética , Sensibilidade e EspecificidadeRESUMO
Adequately harvesting all excitons in a single molecule and inhibiting exciton losses caused by intermolecular interactions are two important factors for achieving high efficiencies thermally activated delayed fluorescence (TADF). One potential approach for optimizing these is to tune alignment of various excited state energy levels by using different doping concentrations. Unfortunately, emission efficiencies of most TADF emitters decrease rapidly with concentrations which limits the window for energy level tunning. In this work, by introducing a spiro group to increase steric hindrance of a TADF emitter (BPPXZ) with a phenoxazine and a dibenzo[a,c]phenazine, emission efficiency of the resulting molecule (BPSPXZ) is much less affected by concentration increase. This enables exploitation of the concentration effects to tune energy levels of its excited states for obtaining simultaneously small singlet-triplet energy offset and large spin-orbital coupling, leading to high-efficiency reverse intersystem crossing. With these merits, organic light-emitting diodes (OLEDs) using the BPSPXZ emitter from 5 to 60 wt% doping can all deliver EQE of over 20%. More importantly, record-high EQEs of 33.4% and 15.8% are respectively achieved in the optimized and nondoped conditions. This work proposes a strategy for developing red TADF emitters by optimizing the intermolecular interaction and energy level alignments to facilitate exciton utilization over wide doping concentrations.
RESUMO
Macrophage migration inhibitory factor (MIF), an immunoregulatory cytokine plays an important role in inflammation and the immune response, and has been described as having a potential role in immune evasion by parasites. Thelazia callipaeda, a vector-borne zoonotic eye worm with a broad host range, has been documented as an agent of ocular infection of thelaziosis. The ability of T. callipaeda to persist in an immunologically competent host has led to the suggestion that it has evolved specific measures to counter immune defenses. To date, whether the immune evasion of T. callipaeda is related to MIF and the possible related signaling pathway and molecular mechanism have remained unclear. In the present study, we examined the effect of T. callipaeda MIF (T. cp-MIF) on macrophages. We analyzed the antigenic epitopes of the candidate T. cp-MIF and found that it exhibited an ideal antigenic index. Morphology, Flow cytometry, and cytokine analysis showed that T. cp-MIF induced the dynamic polarization of THP-1 macrophages from the M1-like phenotype to the M2-like phenotype. The chemotaxis assay revealed an inhibitory effect of T. cp-MIF on THP-1 macrophages. Western blotting suggested that, compared to the control, THP-1 macrophages exposed to T. cp-MIF had higher TLR4 protein expression and the phosphatidylinositol 3'-kinase (PI3K) -Akt pathway activation. In conclusion, T. cp-MIF induces M2-like macrophage polarization through TLR4-mediated activation of the PI3K-Akt pathway, which might provide a basis for future research on how it affects the immune system of the host.
Assuntos
Fatores Inibidores da Migração de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Epitopos , Humanos , Células THP-1RESUMO
RATIONALE: Polyhalogenated carbazoles (PHCZs) are dioxin-like compounds that are ubiquitous in the environment. However, their unintentional emissions from industrial sources have received little attention and there is no method available for determination of PHCZs in industrial waste. This research develops a method for determination of PHCZs in industrial waste. METHODS: In this research, a glass column packed with activated silica serves as a rapid and efficient clean-up pretreatment for purification. An isotope dilution gas chromatography/triple quadrupole tandem mass spectrometry method was established for simultaneous determination of eleven PHCZs in industrial samples. RESULTS: The regression coefficients of the standard curves for the congeners were all >0.99. The method detection limit ranged from 1.46 to 3.82 ng/mL for liquid samples and from 0.009 to 0.021 ng/g for solid samples. The precision described by the relative standard deviation ranged from 2.4% to 18.4% for liquid samples and from 5.5% to 35.8% for solid samples. The recovery ranges for the liquid and solid samples were 82%-123% and 83%-137%, respectively. 3-Chlorocarbazole (3-CCZ) and 36-dichlorocarbazole (36-CCZ) can be detected in both chemical bottom liquid from vinyl chloride production and fly ash from medical waste incineration by this method. CONCLUSIONS: An efficient method is established for determination of PHCZs from industrial waste. The discovery of 3-CCZ and 36-CCZ highlights the importance of identification of potential industrial sources of PHCZs and clarification of their contribution to environmental risks. Our method could be applied to investigate industrial emission of PHCZs.
Assuntos
Resíduos Industriais , Espectrometria de Massas em Tandem , Carbazóis/análise , Carbazóis/química , Cromatografia Gasosa-Espectrometria de Massas , Resíduos Industriais/análiseRESUMO
The distributions of organic pollutants in the gas phase and size-fractionated particle phases can largely affect human health risks posed by them. Gas-particle partitioning and particle-size distributions of some known pollutants have been investigated. However, the pollutants which are more likely to enter the human body and cause strong adverse effects may be neglected. In this study, a nontargeted screening approach combining comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry and chemometrics was developed. Eighty-eight compounds with markedly different proportions in the gas phase and PM1, as well as 50 contaminants with significant differences in PM1 and particles with diameters of 1-2.5 µm, were identified. Of these compounds, 18 were found in the air for the first time. There were obvious discrepancies between the measured and predicted gas-particle partitioning coefficients for some pollutants, suggesting unexpected environmental fates and health risks. The human daily intakes through inhalation and dermal exposure to these pollutants were estimated with the International Commission on Radiological Protection deposition model and transdermal permeability model. A risk-based prioritization was performed. The results indicated that adverse effects posed by 9H-fluoren-9-one, 2-ethylhexyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, p-cumenol, 2,4-diisocyanato-1-methyl-benzene, bis(2-ethylhexyl) phthalate, perylene, (E)-cinnamaldehyde, 4-methyl-2-nitro-phenol, benzoic acid, and bis(2-methylpropyl) ester hexanedioic acid in ambient air may be more severe than those posed by conventionally monitored pollutants. The findings would facilitate raising concerns about these pollutants before they cause further severe and widespread impacts.