RESUMO
The highly variable response rates to immunotherapies underscore our limited knowledge about how tumors can manipulate immune cells. Here the membrane topology of natural killer (NK) cells from patients with liver cancer showed that intratumoral NK cells have fewer membrane protrusions compared with liver NK cells outside tumors and with peripheral NK cells. Dysregulation of these protrusions prevented intratumoral NK cells from recognizing tumor cells, from forming lytic immunological synapses and from killing tumor cells. The membranes of intratumoral NK cells have altered sphingomyelin (SM) content and dysregulated serine metabolism in tumors contributed to the decrease in SM levels of intratumoral NK cells. Inhibition of SM biosynthesis in peripheral NK cells phenocopied the disrupted membrane topology and cytotoxicity of the intratumoral NK cells. Targeting sphingomyelinase confers powerful antitumor efficacy, both as a monotherapy and as a combination therapy with checkpoint blockade.
Assuntos
Células Matadoras Naturais , Neoplasias Hepáticas , Humanos , Sinapses Imunológicas , Citotoxicidade ImunológicaRESUMO
As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.
Assuntos
Interleucinas , Evasão Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53 , Macrófagos Associados a Tumor , Animais , Humanos , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Reprogramação Celular/imunologia , Reprogramação Celular/genética , Imunoterapia/métodos , Interleucinas/metabolismo , Interleucinas/imunologia , Neoplasias Hepáticas/imunologia , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismoRESUMO
Natural killer (NK) cells have crucial roles in tumor surveillance. We found that tumor-infiltrating NK cells in human liver cancers had small, fragmented mitochondria in their cytoplasm, whereas liver NK cells outside tumors, as well as peripheral NK cells, had normal large, tubular mitochondria. This fragmentation was correlated with reduced cytotoxicity and NK cell loss, resulting in tumor evasion of NK cell-mediated surveillance, which predicted poor survival in patients with liver cancer. The hypoxic tumor microenvironment drove the sustained activation of mechanistic target of rapamycin-GTPase dynamin-related protein 1 (mTOR-Drp1) in NK cells, resulting in excessive mitochondrial fission into fragments. Inhibition of mitochondrial fragmentation improved mitochondrial metabolism, survival and the antitumor capacity of NK cells. These data reveal a mechanism of immune escape that might be targetable and could invigorate NK cell-based cancer treatments.
Assuntos
Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Mitocôndrias/metabolismo , Idoso , Animais , Citotoxicidade Imunológica , Proteínas Quinases Associadas com Morte Celular/metabolismo , Feminino , Humanos , Vigilância Imunológica , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/terapia , Masculino , Camundongos , Microscopia Confocal , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Evasão TumoralRESUMO
Lysine lactylation (Kla) is a recently discovered histone mark derived from metabolic lactate. The NAD+ -dependent deacetylase SIRT3, which can also catalyze removal of the lactyl moiety from lysine, is expressed at low levels in hepatocellular carcinoma (HCC) and has been suggested to be an HCC tumor suppressor. Here we report that SIRT3 can delactylate non-histone proteins and suppress HCC development. Using SILAC-based quantitative proteomics, we identify cyclin E2 (CCNE2) as one of the lactylated substrates of SIRT3 in HCC cells. Furthermore, our crystallographic study elucidates the mechanism of CCNE2 K348la delactylation by SIRT3. Our results further suggest that lactylated CCNE2 promotes HCC cell growth, while SIRT3 activation by Honokiol induces HCC cell apoptosis and prevents HCC outgrowth in vivo by regulating Kla levels of CCNE2. Together, our results establish a physiological function of SIRT3 as a delactylase that is important for suppressing HCC, and our structural data could be useful for the future design of activators.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuína 3 , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Lisina , Proliferação de Células , Ciclinas/genéticaRESUMO
Histological imaging is essential for the biomedical research and clinical diagnosis of human cancer. Although optical microscopy provides a standard method, it is a persistent goal to develop new imaging methods for more precise histological examination. Here, we use nitrogen-vacancy centers in diamond as quantum sensors and demonstrate micrometer-resolution immunomagnetic microscopy (IMM) for human tumor tissues. We immunomagnetically labeled cancer biomarkers in tumor tissues with magnetic nanoparticles and imaged them in a 400-nm resolution diamond-based magnetic microscope. There is barely magnetic background in tissues, and the IMM can resist the impact of a light background. The distribution of biomarkers in the high-contrast magnetic images was reconstructed as that of the magnetic moment of magnetic nanoparticles by employing deep-learning algorithms. In the reconstructed magnetic images, the expression intensity of the biomarkers was quantified with the absolute magnetic signal. The IMM has excellent signal stability, and the magnetic signal in our samples had not changed after more than 1.5 y under ambient conditions. Furthermore, we realized multimodal imaging of tumor tissues by combining IMM with hematoxylin-eosin staining, immunohistochemistry, or immunofluorescence microscopy in the same tissue section. Overall, our study provides a different histological method for both molecular mechanism research and accurate diagnosis of human cancer.
Assuntos
Diamante/química , Magnetismo/métodos , Microscopia de Fluorescência/métodos , Neoplasias/patologia , Pontos Quânticos/química , Humanos , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas/química , Nitrogênio/químicaRESUMO
Pancreatic cancer remains a challenging disease with limited treatment options, resulting in high mortality rates. The predominant approach to managing pancreatic cancer patients continues to be systemic cytotoxic chemotherapy. Despite substantial advancements in immunotherapy strategies for various cancers, their clinical utility in pancreatic cancer has proven less effective and durable. Whether administered as monotherapy, employing immune checkpoint inhibitors, tumor vaccines, chimeric antigen receptors T cells, or in combination with conventional chemoradiotherapy, the clinical outcomes remain underwhelming. Extensive preclinical experiments and clinical trials in the realm of pancreatic cancer have provided valuable insights into the complexities of immunotherapy. Chief among the hurdles are the immunosuppressive tumor microenvironment, limited immunogenicity, and the inherent heterogeneity of pancreatic cancer. In this comprehensive review, we provide an overview and critical analysis of current clinical immunotherapy strategies for pancreatic cancer, emphasizing their endeavors to overcome immunotherapy resistance. Particular focus is placed on strategies aimed at reshaping the immunosuppressive microenvironment and enhancing T cell-mediated tumor cell killing. Ultimately, through deeper elucidation of the underlying pathogenic mechanisms of pancreatic cancer and the refinement of therapeutic approaches, we anticipate breakthroughs that will pave the way for more effective treatments in this challenging disease.
Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Imunoterapia/métodos , Neoplasias Pancreáticas/patologia , Antineoplásicos/uso terapêutico , Linfócitos T , Resultado do Tratamento , Microambiente TumoralRESUMO
Relapse is a leading cause of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute myeloid leukemia (AML). However, the underlying mechanisms remain poorly understood. Natural killer (NK) cells play a crucial role in tumor surveillance and cancer immunotherapy, and NK cell dysfunction has been observed in various tumors. Here, we performed ex vivo experiments to systematically characterize the mechanisms underlying the dysfunction of bone marrow-derived NK (BMNK) cells isolated from AML patients experiencing early relapse after allo-HSCT. We demonstrated that higher levels of active transforming growth factor ß1 (TGF-ß1) were associated with impaired effector function of BMNK cells in these AML patients. TGF-ß1 activation was induced by the overexpression of glycoprotein A repetitions predominant on the surface of CD4+ T cells. Active TGF-ß1 significantly suppressed mTORC1 activity, mitochondrial oxidative phosphorylation, the proliferation, and cytotoxicity of BMNK cells. Furthermore, pretreatment with the clinical stage TGF-ß1 pathway inhibitor, galunisertib, significantly restored mTORC1 activity, mitochondrial homeostasis, and cytotoxicity. Importantly, the blockade of the TGF-ß1 signaling improved the antitumor activity of NK cells in a leukemia xenograft mouse model. Thus, our findings reveal a mechanism explaining BMNK cell dysfunction and suggest that targeted inhibition of TGF-ß1 signaling may represent a potential therapeutic intervention to improve outcomes in AML patients undergoing allo-HSCT or NK cell-based immunotherapy.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Medula Óssea/patologia , Fator de Crescimento Transformador beta1 , Transplante Homólogo , Leucemia Mieloide Aguda/patologia , Células Matadoras Naturais/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Crônica , RecidivaRESUMO
Bioinspired microdevices have made significant strides in various applications including human motion and health detection. However, facile and highly efficient fabrication approach of flexible pressure sensors remains a great challenge. Herein, inspired by the gecko's foot structure, a flexible pressure sensor with microdomes structure is fabricated by tip-assisted on-demand electrohydrodynamic jet (EHD-jet) printing method. Ascribed to the interlocking electrodes with microdome structure, 3D deformation rates are substantially enlarged. When the microdromes structure is under pressure, the resistivity of carbon nanotubes film coated on the surface of microdomes structure will change remarkably. By using the combined effect of assisted tip and ring focusing electrode, the influence and constraints on microstructure fabrication caused by substrate material and morphology are minimized. The desired uniform structures can be adjusted rapidly by changing the printing parameters and liquid properties. High length-height ratio (0.64) of microdomes enhances sensitivity, with minimum detection limit is 2 Pa and response time is 40 ms. Finally, the bionic flexible sensor indicated excellent performance in capable of detecting pressure, sound vibrations and human motion. This work presents a new method for high-efficiency fabrication micro-nano patterns for flexible sensors inspired, which could be used in wearable tech and health monitoring.
Assuntos
Nanotubos de Carbono , Pressão , Nanotubos de Carbono/química , Humanos , Dispositivos Eletrônicos Vestíveis , Eletrodos , Impressão Tridimensional , HidrodinâmicaRESUMO
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, whose initiation and development are driven by alterations in driver genes. In this study, we identified four driver genes (TP53, PTEN, CTNNB1, and KRAS) that show a high frequency of somatic mutations or copy number variations (CNVs) in patients with HCC. Four different spontaneous HCC mouse models were constructed to screen for changes in various kinase signaling pathways. The sgTrp53 + sgPten tumor upregulated mTOR and noncanonical nuclear factor-κB signaling, which was shown to be strongly inhibited by rapamycin (an mTOR inhibitor) in vitro and in vivo. The JAK-signal transducer and activator of transcription (STAT) signaling was activated in Ctnnb1mut + sgPten tumor, the proliferation of which was strongly inhibited by napabucasin (a STAT3 inhibitor). Additionally, mTOR, cytoskeleton, and AMPK signaling were upregulated while rapamycin and ezrin inhibitors exerted potent antiproliferative effects in sgPten + KrasG12D tumor. We found that JAK-STAT, MAPK, and cytoskeleton signaling were activated in sgTrp53 + KrasG12D tumor and the combination of sorafenib and napabucasin led to the complete inhibition of tumor growth in vivo. In patients with HCC who had the same molecular classification as our mouse models, the downstream signaling pathway landscapes associated with genomic alterations were identical. Our research provides novel targeted therapeutic options for the clinical treatment of HCC, based on the presence of specific genetic alterations within the tumor.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Variações do Número de Cópias de DNA/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Linhagem Celular TumoralRESUMO
After analyzing the immune characteristics of patients with severe coronavirus disease 2019 (COVID-19), we have identified that pathogenic T cells and inflammatory monocytes with large amount of interleukin 6 secreting may incite the inflammatory storm, which may potentially be curbed through monoclonal antibody that targets the IL-6 pathways. Here, we aimed to assess the efficacy of tocilizumab in severe patients with COVID-19 and seek a therapeutic strategy. The patients diagnosed as severe or critical COVID-19 in The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) and Anhui Fuyang Second People's Hospital were given tocilizumab in addition to routine therapy between 5 and 14 February 2020. The changes of clinical manifestations, computerized tomography (CT) scan image, and laboratory examinations were retrospectively analyzed. Fever returned to normal on the first day, and other symptoms improved remarkably within a few days. Within 5 d after tocilizumab, 15 of the 20 patients (75.0%) had lowered their oxygen intake, and 1 patient needed no oxygen therapy. CT scans manifested that the lung lesion opacity absorbed in 19 patients (90.5%). The percentage of lymphocytes in peripheral blood, which decreased in 85.0% of patients (17/20) before treatment (mean, 15.52 ± 8.89%), returned to normal in 52.6% of patients (10/19) on the fifth day after treatment. Abnormally elevated C-reactive protein decreased significantly in 84.2% of patients (16/19). No obvious adverse reactions were observed. All patients have been discharged on average 15.1 d after giving tocilizumab. Preliminary data show that tocilizumab, which improved the clinical outcome immediately in severe and critical COVID-19 patients, is an effective treatment to reduce mortality.
Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , China , Infecções por Coronavirus/sangue , Infecções por Coronavirus/fisiopatologia , Progressão da Doença , Feminino , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/fisiopatologia , SARS-CoV-2 , Resultado do Tratamento , Tratamento Farmacológico da COVID-19RESUMO
The higher immunogenicity of tumors usually predicts favorable therapeutic responses. Tumor antigens dominate the immunogenic character within tumors. We investigated if there was a targetable tumor antigen during immunogenic chemotherapy within lung cancer. Chemotherapy-induced immunogenic senescence was demonstrated using a multi-marker, three-step workflow, and RNA-sequencing data. The ability of anti-lung-specific X protein (LUNX) antibody to suppress the survival of senescent lung cancer cells was evaluated in vitro and in vivo using real-time cytotoxicity analysis and xenograft mouse models, respectively. The induction of cellular senescence by immunogenic chemotherapy boosted cell-surface shuttling of LUNX and enhanced the immunogenic features of senescent tumor cells, which sensitized lung cancer cells to anti-LUNX antibody-mediated therapy and contributed to tumor suppression. The immunogenic senescence-mediated anti-tumor response was triggered by the direct action of antibody on tumor cells, strengthened by natural-killer cells through an antibody-dependent cell-mediated cytotoxicity response, and ultimately, led to tumor control. Our findings suggest that LUNX is a lung cancer targetable-immunogenic antigen. The proportion of lung cancers responding to LUNX-targeting therapy could be expanded substantially by immunogenic chemotherapy that induces senescence-associated translocation of LUNX to the plasma membrane.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Senescência Celular , Glicoproteínas , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Fosfoproteínas/uso terapêutico , RNA Mensageiro/metabolismoRESUMO
Forty-seven samples of peripheral blood mononuclear cells from four groups of coronavirus disease (COVID)-19 patients (mild, severe, convalescent, retesting-positive) and healthy controls were applied to profile the immune repertoire of COVID-19 patients in acute infection or convalescence by transcriptome sequencing and immune-receptor repertoire (IRR) sequencing. Transcriptome analyses showed that genes within principal component group 1 (PC1) were associated with infection and disease severity whereas genes within PC2 were associated with recovery from COVID-19. A "dual-injury mechanism" of COVID-19 severity was related to an increased number of proinflammatory pathways and activated hypercoagulable pathways. A machine-learning model based on the genes associated with inflammatory and hypercoagulable pathways had the potential to be employed to monitor COVID-19 severity. Signature analyses of B-cell receptors (BCRs) and T-cell receptors (TCRs) revealed the dominant selection of longer V-J pairs (e.g., IGHV3-9-IGHJ6 and IGHV3-23-IGHJ6) and continuous tyrosine motifs in BCRs and lower diversity of TCRs. These findings provide potential predictors for COVID-19 outcomes, and new potential targets for COVID-19 treatment.
Assuntos
COVID-19/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Adulto , COVID-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Tratamento Farmacológico da COVID-19RESUMO
With the development of computer-assisted surgery, preoperational design is detailed in software. However, it is still a challenge for surgeons to realize the surgical plan in the craniofacial surgery. Robot-assisted surgery has advantages of high accuracy and stability. It is suitable for the high-stress procedures like drilling, milling, and cutting. This study aims to verify the feasibility for automatic drilling without soft tissues in model test based on an industrial robot platform.This study chose the data from digital laboratory in Shanghai 9th People's Hospital. The mandibular was reconstructed in software and surgical plan was also designed. Then, the coordinate data was input to the robot's software and matrix conversion was calculated by 4 marked points. The trajectory generation was calculated by inverse kinematics for target coordinates and robot coordinates. The model was fixed and calibrated for automatic drilling. At last, the accuracy was calculated by optic scanning instrument.The installment and preparation cost 10 minutes, the drilling procedure cost 12 minutes. The outside position error was (1.71â±â0.16) mm, the inside position error was (1.37â±â0.28) mm, the orientation error was (3.04â±â1.02)°. Additionally, a total of 5 beagles were tested, with an accuracy error of (2.78â±â1.52)âmm. No postoperative complications occurred.This is the first study reported for robot-assisted automatic surgery in craniofacial surgery. The result shows it is possible to realize the automatic drilling procedure under the condition of no interference like soft tissues. With the development of artificial intelligence and machine vision, robot-assisted surgery may help surgeons to fulfill more automatic procedures for craniofacial surgery.
Assuntos
Mandíbula/cirurgia , Osteotomia Mandibular/instrumentação , Osteotomia Mandibular/métodos , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Animais , Fenômenos Biomecânicos , Cães , DenteRESUMO
Two-dimensional (2D) materials have seen a broad range of applications in electronic and optoelectronic applications; however, full realization of this potential hitherto largely hinges on the quality and performance of the electrical contacts formed between 2D materials and their surrounding metals/semiconductors. Despite the progress in revealing the charge injecting mechanisms and enhancing electrical conductance using various interfacial treatments, how the microstructure of contact interfaces affects local electrical conductivity is still very limited. Here, using conductive atomic force microscopy (c-AFM), for the first time, we directly confirm the conjecture that the electrical conductivity of physisorbed 2D material-metal/semiconductor interfaces is determined by the local electronic charge transfer. Using lattice-resolved conductivity mapping and first-principles calculations, we demonstrate that the electronic charge transfer, thereby electrical conductivity, can be fine-tuned by the topological defects of 2D materials and the atomic stacking with respect to the substrate. Our finding provides a novel route to engineer the electrical contact properties by exploiting fine atomic interactions; in the meantime, it also suggests a convenient and nondestructive means of probing subtle interactions along 2D heterogeneous interfaces.
RESUMO
The structural and electronic properties of the black phosphorus/phosphorus pentoxide (BP/P4O10) van der Waals (vdW) heterostructure are investigated theoretically by first-principles calculations. The BP/P4O10 vdW heterostructure is a direct bandgap semiconductor with intrinsic type-II band alignment thus facilitating separation of photoexcited charge carriers. A transition from semiconducting to metallic is predicted under a positive electric field and the transition of type-II to type-I band alignment occurs under a negative electric field in the BP/P4O10 vdW heterostructure. Moreover, the bandgap can be modulated by adjusting the interlayer distance. The results indicate that the band offsets of the BP/P4O10 vdW heterostructure are tunable, consequently boding well for application to nanoelectronics and optoelectronics.
Assuntos
COVID-19 , Anticorpos Monoclonais Humanizados , Humanos , SARS-CoV-2 , Resultado do TratamentoRESUMO
BACKGROUND: Interleukin 12 (IL-12) is a cytokine that has been reported to exhibit potent tumoricidal effects in animal tumor models. A combined approach using Paclitaxel and platinum-based doublet chemotherapy is the most commonly used backbone regimen for treating lung cancer. Despite numerous studies regarding the anti-tumor effects of IL-12 and the widespread use of conventional chemotherapy, few direct comparisons of IL-12 and conventional chemotherapy in the treatment of lung cancer have been performed. METHODS: We compared IL-12 to paclitaxel and cisplatin doublet chemotherapy in terms of efficacy against lung cancer in mouse models. The antitumor effect was measured by survival assays, histological analyses and imaging analyses. The cytokine levels were assessed using enzyme linked immunosorbent assay (ELISA) and flow cytometry (FACS). The spleen sizes were measured. CD31, CD105 and Vascular endothelial growth factor receptor 3 (VEGFR3) were analyzed using immunofluorescence. Matrix metalloprotein-9 (MMP-9) and cadherin 1 (CDH1) transcript levels were measured by quantitative PCR. Tumor cells apoptosis were examined by Tunel assay. RESULTS: The results showed that IL-12 treatment inhibited lung tumor growth, resulting in the long-term survival of lung cancer-bearing mice. Further examination revealed that IL-12 rapidly activated NK cells to secrete IFN-γ, resulting in the inhibition of tumor angiogenesis. In contrast, paclitaxel and cisplatin doublet chemotherapy did not show the expected efficacy in orthotopic lung cancer models; the IFN-γ levels were not increased after this treatment, and the number of peripheral lymphocytes was reduced. CONCLUSION: Together, these animal model data indicate that IL-12 shows a better curative effect than PTX + CDDP doublet chemotherapy.
Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cisplatino/uso terapêutico , Subunidade p35 da Interleucina-12/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proteínas Cdh1/análise , Linhagem Celular Tumoral , Citocinas/análise , Endoglina/análise , Feminino , Humanos , Interferon gama/sangue , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Metaloproteinase 9 da Matriz/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/tratamento farmacológico , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Resultado do Tratamento , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/análiseRESUMO
The magnetism of Kitaev materials has been widely studied, but their charge properties and the coupling to other degrees of freedom are less known. Here we investigate the charge states of α-RuCl3, a promising Kitaev quantum spin liquid candidate, in proximity to graphite. We discover that few-layered α-RuCl3 experiences a clear modulation of charge states, where a Mott-insulator to weak charge-transfer-insulator transition in the 2D limit occurs by means of heterointerfacial polarization. More notably, distinct signals of incommensurate charge and lattice super-modulations, regarded as an unconventional charge order, accompanied in the insulator. Our theoretical calculations have reproduced the incommensurate charge order by taking into account the antiferroelectricity of α-RuCl3 that is driven by dipole order in the internal electric fields. The findings imply that there is strong coupling between the charge, spin, and lattice degrees of freedom in layered α-RuCl3 in the heterostructure, which offers an opportunity to electrically access and tune its magnetic interactions inside the Kitaev compounds.
RESUMO
OBJECTIVE: The human cluster of differentiation (CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer (NK) cells targeting hematologic malignancies (HMs). METHODS: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine (PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients. RESULTS: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS-CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an "exhausted" phenotype of intratumoral NK cells in patients with HMs or solid tumors. CONCLUSIONS: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.