Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Cell Mol Med ; 28(8): e18248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520220

RESUMO

Tumour-induced immunosuppressive microenvironments facilitate oncogenesis, with regulatory T cells (Tregs) serving as a crucial component. The significance of Treg-associated genes within the context of ovarian cancer (OC) remains elucidated insufficiently. Utilizing single-cell RNA sequencing (scRNA-Seq) for the identification of Treg-specific biomarkers, this investigation employed single-sample gene set enrichment analysis (ssGSEA) for the derivation of a Treg signature score. Weighted gene co-expression network analysis (WGCNA) facilitated the identification of Treg-correlated genes. Machine learning algorithms were employed to determine an optimal prognostic model, subsequently exploring disparities across risk strata in terms of survival outcomes, immunological infiltration, pathway activation and responsiveness to immunotherapy. Through WGCNA, a cohort of 365 Treg-associated genes was discerned, with 70 implicated in the prognostication of OC. A Tregs-associated signature (TAS), synthesized from random survival forest (RSF) and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms, exhibited robust predictive validity across both internal and external cohorts. Low TAS OC patients demonstrated superior survival outcomes, augmented by increased immunological cell infiltration, upregulated immune checkpoint expression, distinct pathway enrichment and differential response to immunotherapeutic interventions. The devised TAS proficiently prognosticates patient outcomes and delineates the immunological milieu within OC, offering a strategic instrument for the clinical stratification and selection of patients.


Assuntos
Neoplasias Ovarianas , Linfócitos T Reguladores , Humanos , Feminino , Prognóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Algoritmos , Imunoterapia , Microambiente Tumoral/genética
2.
Environ Toxicol ; 39(2): 736-750, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37713585

RESUMO

Ovarian cancer (OC) is a malignancy associated with poor prognosis and has been linked to regulatory T cells (Tregs) in the immune microenvironment. Nevertheless, the association between Tregs-related genes (TRGs) and OC prognosis remains incompletely understood. The xCell algorithm was used to analyze Tregs scores across multiple cohorts. Weighted gene co-expression network analysis (WGCNA) was utilized to identify potential TRGs and molecular subtypes. Furthermore, we used nine machine learning algorithms to create risk models with prognostic indicators for patients. Reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining were used to demonstrate the immunosuppressive ability of Tregs and the expression of key TRGs in clinical samples. Our study found that higher Tregs scores were significantly correlated with poorer overall survival. Recurrent patients exhibited increased Tregs infiltration and reduced CD8+ T cell. Moreover, molecular subtyping using seven key TRGs revealed that subtype B exhibited higher enrichment of multiple oncogenic pathways and had a worse prognosis. Notably, subtype B exhibited high Tregs levels, suggesting immune suppression. In addition, we validated machine learning-derived prognostic models across multiple platform cohorts to better distinguish patient survival and predict immunotherapy efficacy. Finally, the differential expression of key TRGs was validated using clinical samples. Our study provides novel insights into the role of Tregs in the immune microenvironment of OC. We identified potential therapeutic targets derived from Tregs (CD24, FHL2, GPM6A, HOXD8, NAP1L5, REN, and TOX3) for personalized treatment and created a machining learning-based prognostic model for OC patients, which could be useful in clinical practice.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Perfilação da Expressão Gênica , Terapia de Imunossupressão , Linfócitos T Reguladores , Microambiente Tumoral/genética
3.
Environ Toxicol ; 39(1): 85-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37665173

RESUMO

This study explored the effect of Regenerating Islet-Derived 3-Alpha (REG3A) on ovarian cancer (OC) progression. REG3A expression was scrutinized in clinical tissues of 97 OC cases by quantitative real-time polymerase chain reaction (qRT-PCR). REG3A expression in OC cells and cisplatin (DDP) resistance OC cells was regulated by transfection. LY294002 (10 µM, inhibitor of the PI3K/Akt signaling pathway) was used to treat OC cells and DDP resistance OC cells. Cell counting kit-8 and methyl-thiazolyl-tetrazolium assays were applied for proliferation and DDP resistance detection. Flow cytometry was utilized for cell cycle and apoptosis analysis. The effect of REG3A on the OC cell in vivo growth was researched by establishing xenograft tumor model via using nude mice using nude mice. The expression of genes in clinical samples, cells and xenograft tumor tissues was investigated by qRT-PCR, Western blot and immunohistochemistry. As a result, REG3A was over-expressed in OC patients and cells, associating with dismal prognosis of patients. REG3A knockdown repressed proliferation, DDP resistance, induced cell cycle arrest and apoptosis of OC cells, and reduced the expression MDR-1, Cyclin D1, Cleaved caspase 3 proteins and the PI3K/Akt signaling pathway activity in OC cells. LY294002 treatment abrogated the promotion effect of REG3A on OC cell proliferation, apoptosis inhibition and DDP resistance. REG3A knockdown suppressed the in vivo growth of OC cells. Thus, REG3A promoted proliferation and DDP resistance of OC cells by activating the PI3K/Akt signaling pathway. REG3A might be a promising target for the clinical treatment of OC.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
4.
New Phytol ; 238(3): 1101-1114, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36683448

RESUMO

Cyanobacterial blooms pose a serious threat to public health due to the presence of cyanotoxins. Microcystin-LR (MC-LR) produced by Microcystis aeruginosa is the most common cyanotoxins. Due to the limitation of isolation, purification, and genetic manipulation techniques, it is difficult to study and verify in situ the biosynthetic pathways and molecular mechanisms of MC-LR. We reassembled the biosynthetic gene cluster (mcy cluster) of MC-LR in vitro by synthetic biology, designed and constructed the strong bidirectional promoter biPpsbA2 , transformed it into Synechococcus 7942, and successfully expressed MC-LR at a level of 0.006-0.018 fg cell-1 d-1 . We found the expression of MC-LR led to abnormal cell division and cellular filamentation, further using various methods proved that by irreversibly competing its GTP-binding site, MC-LR inhibits assembly of the cell division protein FtsZ. The study represents the first reconstitution and expression of the mcy cluster and the autotrophic production of MC-LR in model cyanobacterium, which lays the foundation for resolving the microcystins biosynthesis pathway. The discovered role of MC-LR in cell division reveals a mechanism of how blooming cyanobacteria gain a competitive edge over their nonblooming counterparts.


Assuntos
Microcistinas , Synechococcus , Microcistinas/genética , Synechococcus/genética , Toxinas de Cianobactérias , Família Multigênica , Divisão Celular
5.
Microb Cell Fact ; 22(1): 208, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833755

RESUMO

BACKGROUND: Zymomonas mobilis is an important industrial bacterium ideal for biorefinery and synthetic biology studies. High-throughput CRISPR-based genome editing technologies have been developed to enable targeted engineering of genes and hence metabolic pathways in the model ZM4 strain, expediting the exploitation of this biofuel-producing strain as a cell factory for sustainable chemicals, proteins and biofuels production. As these technologies mainly take plasmid-based strategies, their applications would be impeded due to the fact that curing of the extremely stable plasmids is laborious and inefficient. Whilst counterselection markers have been proven to be efficient for plasmid curing, hitherto only very few counterselection markers have been available for Z. mobilis. RESULTS: We constructed a conditional lethal mutant of the pheS gene of Z. mobilis ZM4, clmPheS, containing T263A and A318G substitutions and coding for a mutated alpha-subunit of phenylalanyl-tRNA synthetase to allow for the incorporation of a toxic analog of phenylalanine, p-chloro-phenylalanine (4-CP), into proteins, and hence leading to inhibition of cell growth. We demonstrated that expression of clmPheS driven by a strong Pgap promoter from a plasmid could render the Z. mobilis ZM4 cells sufficient sensitivity to 4-CP. The clmPheS-expressing cells were assayed to be extremely sensitive to 0.2 mM 4-CP. Subsequently, the clmPheS-assisted counterselection endowed fast curing of genome engineering plasmids immediately after obtaining the desired mutants, shortening the time of every two rounds of multiplex chromosome editing by at least 9 days, and enabled the development of a strategy for scarless modification of the native Z. mobilis ZM4 plasmids. CONCLUSIONS: This study developed a strategy, coupling an endogenous CRISPR-based genome editing toolkit with a counterselection marker created here, for rapid and efficient multi-round multiplex editing of the chromosome, as well as scarless modification of the native plasmids, providing an improved genome engineering toolkit for Z. mobilis and an important reference to develope similar genetic manipulation systems in other non-model organisms.


Assuntos
Zymomonas , Zymomonas/metabolismo , Plasmídeos/genética , Edição de Genes , Fenilalanina/metabolismo
6.
BMC Cardiovasc Disord ; 23(1): 608, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087221

RESUMO

BACKGROUND: Carotid plaque (CP) formation is an important consequence of atherosclerosis and leads to significant complications. Levels of neuropeptide Y (NPY), which is a sympathetic neurotransmitter, are elevated in cardiovascular diseases. It also has important roles in inflammatory conditions. This study aimed to explore the relationship between serum NPY and CP and to study further the influence of NPY and inflammatory factors on CP. METHODS: This cross-sectional study was conducted among 300 adults who underwent a health examination at the Second Affiliated Hospital of Fujian Medical University in Fujian Province, of whom 177 were finally enrolled. The participants were divided into the CP (n = 120) and non-CP (NCP) or control (n = 57) groups according to the results of carotid artery color Doppler ultrasound. The CP group was further classified into stable plaque (SP, n = 80) and vulnerable plaque (VP, n = 40) groups based on plaque characteristics. Serum NPY and pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) levels were examined. Univariate and correlation analyses were used to evaluate the correlation between serum NPY levels, pro-inflammatory cytokines, and the CP phenotype. RESULTS: The serum NPY and TNF-α levels of patients in the CP group were significantly higher than those in individuals from the NCP group [ (177.30 ± 43.29) pg.mL- 1 vs. (121.53 ± 40.16)pg.mL- 1, P < 0.001; (41.94 ± 14.19) pg.mL- 1 vs.(33.54 ± 13.37)pg.mL- 1, P = 0.003]. The serum NPY levels of the patients in the VP group were significantly higher than those in patients from the SP group [(191.67 ± 39.87)ng.L- 1 vs.(170.12 ± 43.37)ng.L- 1, P = 0.01, P < 0.05]. Serum TNF-α and NPY levels were positively correlated among patients from the CP group (r = 0.184, P = 0.044). The binary logistic regression analysis showed that serum NPY and TNF-α were independent influencing factors of CP [(OR = 1.029, P < 0.001);(OR = 1.030, P = 0.023)]. The area under the ROC curve of NPY predicting the CP showed statistical significance at a value of 0.819. CONCLUSION: Together, elevated serum NPY levels seem to be associated with the occurrence of coronary atherosclerosis in Chinese adults.


Assuntos
Neuropeptídeo Y , Placa Aterosclerótica , Adulto , Humanos , Estudos Transversais , Fator de Necrose Tumoral alfa , Citocinas , Artérias Carótidas , China
7.
Exp Cell Res ; 417(2): 113216, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605648

RESUMO

Missed abortion (MA) is a special form of spontaneous abortion that is increasing in incidence. However, the precise molecular mechanisms underlying MA, especially regarding the decidua, are poorly understood. Herein, we identified molecular signaling pathways related to MA by comparing the decidua of women experiencing normal pregnancy and MA using a quantitative proteomics approach based on HPLC-MS/MS and iTRAQ labeling. Integrated bioinformatics analysis of villi and decidua was performed to reveal potential crosstalk signals in closely related tissues. We identified 2277 proteins with high confidence in decidua, of which 232 were differentially expressed in MA samples. Specifically, we reported that integrated quantitative proteomic and bioinformatic analysis revealed altered proteins in MA and the mechanisms underpinning MA involved numerous pathways, especially ribosome and cellular metabolism signaling. Moreover, Importin 9, Cullin 1 and COX6C are critical for MA, and their altered expression might contribute to the pathophysiology of MA. In particular, COX6C was dramatically down-regulated in both decidua and villi of MA. COX6C was also found to be highly expressed in syncytiotrophoblastic and cytotrophoblastic cells in villi and widely expressed in decidua of the control group, but dramatically decreased in the MA group. Functional analysis showed that knockdown of COX6C inhibited apoptosis process in both HTR-8 and SiHa cells, suggesting that COX6C may play protective effects in MA. Thus, this study could help to map the regulatory protein network related to MA and contribute to the pathophysiological mechanisms of MA.


Assuntos
Aborto Retido , Aborto Retido/metabolismo , Vilosidades Coriônicas/metabolismo , Decídua/metabolismo , Feminino , Humanos , Gravidez , Proteômica , Espectrometria de Massas em Tandem
8.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446078

RESUMO

Laccases are widely used in industrial production due to their broad substrate availability and environmentally friendly nature. However, the pursuit of laccases with superior stability and increased heterogeneous expression to meet industry demands appears to be an ongoing challenge. To address this challenge, we resurrected five ancestral sequences of laccase BsCotA and their homologues. All five variants were successfully expressed in soluble and functional forms with improved expression levels in Escherichia coli. Among the five variants, three exhibited higher catalytic rates, thermal stabilities, and acidic stabilities. Notably, AncCotA2, the best-performing variant, displayed a kcat/KM of 7.5 × 105 M-1·s-1, 5.2-fold higher than that of the wild-type BsCotA, an improved thermo- and acidic stability, and better dye decolorization ability. This study provides a laccase variant with high application potential and presents a new starting point for future enzyme engineering.


Assuntos
Proteínas de Bactérias , Lacase , Lacase/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Corantes/química
9.
Entropy (Basel) ; 25(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37190382

RESUMO

Vehicle re-identification across multiple cameras is one of the main problems of intelligent transportation systems (ITSs). Since the differences in the appearance between different vehicles of the same model are small and the appearance of the same vehicle changes drastically from different viewpoints, vehicle re-identification is a challenging task. In this paper, we propose a model called multi-receptive field soft attention part learning (MRF-SAPL). The MRF-SAPL model learns semantically diverse vehicle part-level features under different receptive fields through multiple local branches, alleviating the problem of small differences in vehicle appearance. To align vehicle parts from different images, this study uses soft attention to adaptively locate the positions of the parts on the final feature map generated by a local branch and maintain the continuity of the internal semantics of the parts. In addition, to obtain parts with different semantic patterns, we propose a new loss function that punishes overlapping regions, forcing the positions of different parts on the same feature map to not overlap each other as much as possible. Extensive ablation experiments demonstrate the effectiveness of our part-level feature learning method MRF-SAPL, and our model achieves state-of-the-art performance on two benchmark datasets.

10.
Cell Biol Int ; 46(10): 1704-1713, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35819096

RESUMO

As the main component of seminiferous tubules, Sertoli cells are in close contact with germ cells and generate niche signals, which exhibit pivotal functions in spermatogenesis and male fertility. However, the regulatory mechanisms of Sertoli cell-germline interactions (SGIs) in the testes of neonatal mice (NM) remain largely unclear. Previously, we identified spermidine/spermine N1-acetyl transferase 2 (SAT2) and stromal interaction molecule 1 (STIM1) to be potential regulators of testicular cord formation via comparative proteomics analysis. Here, we demonstrated a novel role of SAT2 for SGIs during testicular development in NM. Testicular explants lacking SAT2 affected the mislocation, but not the quantity, of Sertoli cells, which led to maintenance defects in spermatogonial stem cells (SSCs). Interestingly, SAT2 was essential for the migration of TM4 cells, a Sertoli cell line. Mechanistically, SAT2 was able to bind STIM1, repress its expression, and regulate homeostasis of a reactive oxygen species/wingless type (WNT)/ß-catenin pathway in NM testes. Collectively, our study identified that SAT2 was able to regulate SGIs via a STIM1-mediated WNT signaling pathway.


Assuntos
Acetiltransferases , Células de Sertoli , Molécula 1 de Interação Estromal , Via de Sinalização Wnt , Acetiltransferases/metabolismo , Animais , Células Germinativas/metabolismo , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Molécula 1 de Interação Estromal/metabolismo , Testículo/metabolismo , beta Catenina/metabolismo
11.
J Obstet Gynaecol ; 42(6): 1759-1768, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35260025

RESUMO

The aim of this study was to identify the effect of hyperglycaemia on placentas of gestational diabetes mellitus (GDM) women with macrosomia and normal pre-pregnancy body mass index (BMI), and uncover the molecular mechanism of hyperglycaemia on trophoblast cells in vitro. GDM women with normal pre-pregnancy BMI were divided into GM group (macrosomia, n = 30) and GN group (normal birth weight, n = 35). The study showed GM group had more adverse pregnancy outcomes and higher levels of gestational weight gain, blood glucose and triglyceride. After adjustment for confounding factors, just the fasting plasma glucose level and HbA1c percentage were related to the incidence of GDM-induced macrosomia with normal pre-pregnancy BMI. Meanwhile, the fasting blood glucose was closely related to the placental weight and placental PCNA expression. Furthermore, the in vitro model for placenta showed that hyperglycaemia significantly promoted trophoblast cell proliferation and activated ERK1/2 phosphorylation. ERK1/2 inhibitor markedly suppressed hyperglycaemia-induced trophoblastic proliferation. The fasting plasma glucose and placenta are closely related with the development of GDM-induced macrosomia with normal pre-pregnancy BMI. The mechanism may be hyperglycaemia promotes trophoblast cell proliferation via ERK1/2 signalling. It provides scientific evidence for optimising outcomes of GDM women with normal pre-pregnancy BMI.IMPACT STATEMENTWhat is already known on this subject? Gestational diabetes mellitus (GDM) is one of the strongest risk factors correlated with macrosomia. The hyperglycaemic intrauterine environment affects not only the foetus but also the placental development and function in humans and experimental rodents. However, placental abnormalities associated with maternal diabetes have been inconsistently reported, possibly because of population differences in pre-pregnancy weight, diabetes types, glycemic control or pregnancy complication, and the molecular mechanism of hyperglycaemia on trophoblast cells in vitro was not clearly stated.What do the results of this study add? This is the first study to identify the effect of hyperglycaemia on placentas of gestational diabetes mellitus (GDM) women with macrosomia and normal pre-pregnancy body mass index (BMI), and uncover the molecular mechanism of hyperglycaemia on trophoblast cells in vitro.What are the implications of these findings for clinical practice and/or further research? Understanding placental changes in the environment of abnormal glucose metabolism which can establish the maternal-placental-foetal interface dysfunction as a potential source of adverse pregnancy outcomes is very necessary. Our study found the fasting plasma glucose and placenta are closely related with the development of GDM-induced macrosomia with normal pre-pregnancy BMI. The mechanism may be hyperglycaemia promotes trophoblast cell proliferation via ERK1/2 signalling. It provides scientific evidence for optimising outcomes of GDM women with normal pre-pregnancy BMI, and could be used for the following studies of relationship between placenta and childhood complications.


Assuntos
Diabetes Gestacional , Hiperglicemia , Peso ao Nascer , Glicemia/metabolismo , Índice de Massa Corporal , Proliferação de Células , Criança , Feminino , Macrossomia Fetal/epidemiologia , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Hiperglicemia/complicações , Placenta/metabolismo , Gravidez , Antígeno Nuclear de Célula em Proliferação/metabolismo , Triglicerídeos , Trofoblastos , Aumento de Peso
12.
Nucleic Acids Res ; 47(21): 11461-11475, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31647102

RESUMO

Application of CRISPR-based technologies in non-model microorganisms is currently very limited. Here, we reported efficient genome engineering of an important industrial microorganism, Zymomonas mobilis, by repurposing the endogenous Type I-F CRISPR-Cas system upon its functional characterization. This toolkit included a series of genome engineering plasmids, each carrying an artificial self-targeting CRISPR and a donor DNA for the recovery of recombinants. Through this toolkit, various genome engineering purposes were efficiently achieved, including knockout of ZMO0038 (100% efficiency), cas2/3 (100%), and a genomic fragment of >10 kb (50%), replacement of cas2/3 with mCherry gene (100%), in situ nucleotide substitution (100%) and His-tagging of ZMO0038 (100%), and multiplex gene deletion (18.75%) upon optimal donor size determination. Additionally, the Type I-F system was further applied for CRISPRi upon Cas2/3 depletion, which has been demonstrated to successfully silence the chromosomally integrated mCherry gene with its fluorescence intensity reduced by up to 88%. Moreover, we demonstrated that genome engineering efficiency could be improved under a restriction-modification (R-M) deficient background, suggesting the perturbance of genome editing by other co-existing DNA targeting modules such as the R-M system. This study might shed light on exploiting and improving CRISPR-Cas systems in other microorganisms for genome editing and metabolic engineering practices.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Engenharia Metabólica/métodos , Zymomonas/genética , Sistemas CRISPR-Cas/genética , Clonagem Molecular/métodos , Deleção de Genes , Genoma Bacteriano/genética , Organismos Geneticamente Modificados , Plasmídeos/genética , Plasmídeos/metabolismo , Zymomonas/metabolismo
13.
Microb Cell Fact ; 18(1): 162, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581942

RESUMO

BACKGROUND: Efficient and convenient genome-editing toolkits can expedite genomic research and strain improvement for desirable phenotypes. Zymomonas mobilis is a highly efficient ethanol-producing bacterium with a small genome size and desirable industrial characteristics, which makes it a promising chassis for biorefinery and synthetic biology studies. While classical techniques for genetic manipulation are available for Z. mobilis, efficient genetic engineering toolkits enabling rapidly systematic and high-throughput genome editing in Z. mobilis are still lacking. RESULTS: Using Cas12a (Cpf1) from Francisella novicida, a recombinant strain with inducible cas12a expression for genome editing was constructed in Z. mobilis ZM4, which can be used to mediate RNA-guided DNA cleavage at targeted genomic loci. gRNAs were then designed targeting the replicons of native plasmids of ZM4 with about 100% curing efficiency for three native plasmids. In addition, CRISPR-Cas12a recombineering was used to promote gene deletion and insertion in one step efficiently and precisely with efficiency up to 90%. Combined with single-stranded DNA (ssDNA), CRISPR-Cas12a system was also applied to introduce minor nucleotide modification precisely into the genome with high fidelity. Furthermore, the CRISPR-Cas12a system was employed to introduce a heterologous lactate dehydrogenase into Z. mobilis with a recombinant lactate-producing strain constructed. CONCLUSIONS: This study applied CRISPR-Cas12a in Z. mobilis and established a genome editing tool for efficient and convenient genome engineering in Z. mobilis including plasmid curing, gene deletion and insertion, as well as nucleotide substitution, which can also be employed for metabolic engineering to help divert the carbon flux from ethanol production to other products such as lactate demonstrated in this work. The CRISPR-Cas12a system established in this study thus provides a versatile and powerful genome-editing tool in Z. mobilis for functional genomic research, strain improvement, as well as synthetic microbial chassis development for economic biochemical production.


Assuntos
Edição de Genes/métodos , Genoma Bacteriano , Zymomonas/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Francisella/enzimologia , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Zymomonas/metabolismo
14.
Gynecol Obstet Invest ; 80(1): 38-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25823505

RESUMO

OBJECTIVE: To describe a modified nerve-sparing panhysterectomy and to investigate the feasibility and impact of this nerve-sparing technique in improving postoperative pelvic visceral dysfunctions of benign uterine disease patients. METHODS: From January 2008 to January 2010, a total of 300 patients diagnosed with benign uterine diseases at the Second Affiliated Hospital of Nantong University were enrolled. Of those, 150 randomly selected patients underwent modified panhysterectomy (research group), while the other 150 patients underwent conventional panhysterectomy (control group). The surgery-related parameters, including operation time, intraoperative blood loss, length of hospital stay, postoperative indwelling catheter time, and first voiding and defecation time were compared between the two groups. The extent of nerve damage in both groups was examined using the nerve-specific marker S-100 via immunohistochemistry. Besides, postoperative assessments of bladder and bowel functions were conducted within 1 year after the operation. RESULTS: The surgery-related parameters in the two groups showed no significant difference (p > 0.05). Immunohistochemistry results showed significantly reduced damage of the nerves in the research group. We also found a better bladder and bowel function in the research group (p < 0.05) and in younger patients (p < 0.05) compared with that in the control group. Recovery trends of the bladder and bowel function were found in both groups (χ(2) = 7.512, p = 0.006 in the research group; χ(2) = 7.299, p = 0.007 in the control group). CONCLUSION: Modified panhysterectomy for benign uterine diseases seems feasible and safe, with the main advantage of improving postoperative urocystic and rectal dysfunctions through the preservation of the pelvic autonomic nerves.


Assuntos
Histerectomia/métodos , Traumatismos dos Nervos Periféricos/prevenção & controle , Doenças Uterinas/cirurgia , Útero/inervação , Adulto , Idoso , Perda Sanguínea Cirúrgica , Constipação Intestinal/epidemiologia , Constipação Intestinal/etiologia , Feminino , Humanos , Imuno-Histoquímica , Tempo de Internação , Menopausa , Pessoa de Meia-Idade , Duração da Cirurgia , Complicações Pós-Operatórias/prevenção & controle , Proteínas S100/análise , Fatores de Tempo , Transtornos Urinários/epidemiologia , Transtornos Urinários/etiologia , Útero/química
15.
Aging Cell ; 23(3): e14057, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044573

RESUMO

Aging is a complex biological process leading to impaired functions, with a variety of hallmarks. In the testis of Drosophila, the terminal epithelium region is involved in spermatid release and maturation, while its functional diversity and regulatory mechanism remain poorly understood. In this study, we performed single-cell RNA-sequencing analysis (scRNA-seq) to characterize the transcriptomes of terminal epithelium in Drosophila testes at 2-, 10 and 40-Days. Terminal epithelium populations were defined with Metallothionein A (MtnA) and subdivided into six novel sub-cell clusters (EP0-EP5), and a series of marker genes were identified based on their expressions. The data revealed the functional characteristics of terminal epithelium populations, such as tight junction, focal adhesion, bacterial invasion, oxidative stress, mitochondrial function, proteasome, apoptosis and metabolism. Interestingly, we also found that disrupting genes for several relevant pathways in terminal epithelium led to male fertility disorders. Moreover, we also discovered a series of age-biased genes and pseudotime trajectory mediated state-biased genes during terminal epithelium aging. Differentially expressed genes during terminal epithelium aging were mainly participated in the regulation of several common signatures, e.g. mitochondria-related events, protein synthesis and degradation, and metabolic processes. We further explored the Drosophila divergence and selection in the functional constraints of age-biased genes during aging, revealing that age-biased genes in epithelial cells of 2 Days group evolved rapidly and were endowed with greater evolutionary advantages. scRNA-seq analysis revealed the diversity of testicular terminal epithelium populations, providing a gene target resource for further systematic research of their functions during aging.


Assuntos
Drosophila , Testículo , Animais , Masculino , Testículo/metabolismo , Drosophila/genética , Transcriptoma/genética , Envelhecimento/genética , Epitélio
16.
Coron Artery Dis ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767051

RESUMO

BACKGROUND: Previous reports have suggested that coronary computed tomography angiography (CCTA)-based radiomics analysis is a potentially helpful tool for assessing vulnerable plaques. We aimed to investigate whether coronary radiomic analysis of CCTA images could identify vulnerable plaques in patients with stable angina pectoris. METHODS: This retrospective study included patients initially diagnosed with stable angina pectoris. Patients were randomly divided into either the training or test dataset at an 8 : 2 ratio. Radiomics features were extracted from CCTA images. Radiomics models for predicting vulnerable plaques were developed using the support vector machine (SVM) algorithm. The model performance was assessed using the area under the curve (AUC); the accuracy, sensitivity, and specificity were calculated to compare the diagnostic performance using the two cohorts. RESULTS: A total of 158 patients were included in the analysis. The SVM radiomics model performed well in predicting vulnerable plaques, with AUC values of 0.977 and 0.875 for the training and test cohorts, respectively. With optimal cutoff values, the radiomics model showed accuracies of 0.91 and 0.882 in the training and test cohorts, respectively. CONCLUSION: Although further larger population studies are necessary, this novel CCTA radiomics model may identify vulnerable plaques in patients with stable angina pectoris.

17.
Zhonghua Gan Zang Bing Za Zhi ; 21(9): 674-8, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24160342

RESUMO

OBJECTIVE: To determine the role of IGF-1/PI3K pathway and investigate the molecular mechanism of Fuzhenghuayu (FZHY) therapy in a spontaneous recovery rat model of liver fibrosis. METHODS: The liver fibrosis model was induced in male Wistar rats by administering 8 weeks of twice weekly CCL4 intraperitoneal injections without (untreated model) or with once daily FZHY (treated model). Normal, untreated rats served as the control group. At weeks 4, 6 and 8 (fibrosis) and 10, 12 and 14 (spontaneous recovery) after modeling initiation, effects on protein (a-SMA, IGF-1, PI3K) and mRNA (IGF-1, PI3K) expression levels were evaluated by immunohistochemistry and RT-PCR, respectively. Serum markers of liver function (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) and liver cell damage (alkaline hydrolysis, HYP) were measured. Histology was performed to assess the degree of inflammation and fibrosis (Ishak scoring system). RESULTS: In the untreated model group, progression of liver fibrosis (weeks 4, 6 and 8) was accompanied by gradual increases in inflammation, necrosis, serum ALT and AST, and hepatic expression of a-SMA protein and IGF-1 and PI3K protein and mRNA; however, during the spontaneous recovery period (weeks 10, 12 and 14) the IGF-1 and PI3K protein and mRNA levels rapidly decreased and the HYP level, Ishak score, and a-SMA hepatic expression also decreased. The FZHY-treated model group showed significantly lower fibrosis-related up-regulation of IGF-1 and PI3K protein and mRNA expression, HYP level, Ishak score, and a-SMA hepatic expression at each time point (vs. untreated model group). CONCLUSION: The IGF-1/PI3K pathway may contribute to progression of liver fibrosis. The mechanism by which FZHY prevents liver fibrosis in a rat model may involve blocking of the IGF/PI3K pathway and inhibiting HSC activation.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática Experimental/metabolismo , Fígado/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/patologia , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Wistar
18.
Foods ; 12(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37835335

RESUMO

Flat peach, a predominant fruit consumed in China, is highly susceptible to softening and perishable. The impact of 1-methylcycloproene (1-MCP) fumigation combined with ε-poly-L-lysine (ε-PL) on softening and postharvest reactive oxygen species (ROS) and phenylpropanoid pathway metabolisms in peaches and its relationship to disease resistance were investigated. Findings revealed that a combination of 1 µL L-1 1-MCP and 300 mg L-1 ε-PL effectively suppressed the activity of cell-wall-degrading enzymes and the disassembly of cell wall structure, thus maintaining higher firmness and lower decay incidence. Compared to the control group, the synergistic approach bolstered enzymatic responses linked to disease resistance and ROS-scavenge system, consistently preserving total phenolics, flavonoids, ascorbic acid, and glutathione levels. Concurrently, the accumulation of hydrogen peroxide and malondialdehyde was significantly diminished post-treatment. These results show that there is good synergistic effect between 1-MCP and ε-PL, which could effectively maintain the quality of flat peach fruit by modulating cell wall metabolism and enhancing the resistance.

19.
Clin Transl Oncol ; 25(10): 2901-2910, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37000289

RESUMO

BACKGROUND: Hsa_circ_0001535 is involved in biological processes in various tumors. However, the biological effects and related mechanism of hsa_circ_0001535 in ovarian cancer (OC) is unclear. This work is aimed to probe the biological function and underlying mechanism of hsa_circ_0001535 in OC, especially sponged with mi-RNA, require further elucidation. METHODS: Hsa_circ_0001535 expression in OC tissues and cell lines were examined by qRT-PCR. Hsa_circ_0001535 overexpression model was constructed by lentivirus-mediated transfection in two OC cell lines, and the biological functions of hsa_circ_0001535 were evaluated by CCK-8, transwell assay and Western blot. Dual luciferase reporter gene assay was respectively used to explore the relationship between hsa_circ_0001535 and miR-593-3p, as well as miR-593-3p and PTEN. The expression of miR-593-3p and PTEN were detected by qRT-PCR in two OC cell lines and OC tissues. RESULTS: Hsa_circ_0001535 was down-regulated in OC tissues and cell lines. Hsa_circ_0001535 overexpression inhibited proliferation, migration and EMT marker expression in OC cells. Of interest, hsa_circ_0001535 targeted miR-593-3p and reduced its RNA level in OC cells. PTEN was a target gene of miR-593-3p, which was up-regulated by inhibiting miR-593-3p in OC cells. Furthermore, miR-593-3p mimic treatment reversed the up-regulation of PTEN by hsa_circ_0001535 overexpression in OC cells. CONCLUSIONS: The above results showed that hsa_circ_0001535 acted as a molecular sponge for miR-593-3p to repress miR-593-3p expression, and promoted the expression of PTEN, thus inhibited proliferation and migration of OC cells. Our research provides a potential therapeutic target for ovarian cancer patients.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Feminino , Humanos , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Reporter , MicroRNAs/genética , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , RNA Circular/genética
20.
Food Chem ; 400: 134100, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36075172

RESUMO

Poly (butylene adipate-co-terephthalate) (PBAT)/polylactic acid (PLA) blended with compatibilizers (polycaprolactone, PCL; poly (ethylene glycol), PEG; titanium dioxide, nano-TiO2) (TP@PLA composites) were developed by melt processing. Natamycin incorporated into TP@PLA blend composites formed NTP@PLA films, which exhibited high tensile strength (24.1-43.5 MPa) and elongation at break (85.8-258.2 %), and exhibited good oxygen permeability, water vapor permeability, surface hydrophobicity and biodegradability. The in vitro results revealed that inhibition of Penicillium expansum cell growth of the NTP@PLA films with addition of 1.0 wt% natamycin reached 95.72 %. The NTP@PLA film with natamycin effectively reduced incidence of decay (1.52 %) on grapes, maintained their quality, and inhibited the growth of pathogenic fungi to up to 0.42 log cfu·g-1. This study generates new insights into the preservation properties of antimicrobial NTP@PLA film, which endow it with great application potential as a novel and eco-friendly packaging material for the food industry.


Assuntos
Anti-Infecciosos , Vitis , Adipatos , Alcenos , Antibacterianos , Anti-Infecciosos/farmacologia , Etilenoglicóis , Ácido Láctico , Natamicina , Oxigênio , Ácidos Ftálicos , Poliésteres , Vapor , Titânio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa