RESUMO
The peptidyl-prolyl cis/trans isomerase NIMA-interaction 1 (Pin1) catalyzes the transition of the proline ring from the cis to trans conformation, resulting in conformational and functional changes in proteins that are regulated by proline-guided serine/threonine phosphorylation. In recent years, Pin1 has emerged as a novel molecular target for the diagnosis and treatment of various malignant tumors. Notably, it has been found that Pin1 is highly expressed in pancreatic cancer. This article focuses on the mechanisms by which Pin1 orchestrates multiple oncogenic functions in the development of pancreatic cancer. By exploring the intricate interactions between Pin1 and the pancreatic tumor microenvironment, we provide an overview of Pin1's role in modifying glycolytic metabolism, redox balance, and the hypoxic microenvironment of pancreatic cancer. Furthermore, we summarize the potential anticancer effects of Pin1 inhibitors, aiming to elucidate Pin1's promise as a potential anticancer agent, particularly in the context of pancreatic cancer.
RESUMO
Diffractive optical elements (DOEs) have widespread applications in optics, ranging from point spread function engineering to holographic display. Conventionally, DOE design relies on Cartesian simulation grids, resulting in square features in the final design. Unfortunately, Cartesian grids provide an anisotropic sampling of the plane, and the resulting square features can be challenging to fabricate with high fidelity using methods such as photolithography. To address these limitations, we explore the use of hexagonal grids as a new grid structure for DOE design and fabrication. In this study, we demonstrate wave propagation simulation using an efficient hexagonal coordinate system and compare simulation accuracy with the standard Cartesian sampling scheme. Additionally, we have implemented algorithms for the inverse DOE design. The resulting hexagonal DOEs, encoded with wavefront information for holograms, are fabricated and experimentally compared to their Cartesian counterparts. Our findings indicate that employing hexagonal grids enhances holographic imaging quality. The exploration of new grid structures holds significant potential for advancing optical technology across various domains, including imaging, microscopy, photography, lighting, and virtual reality.
RESUMO
Pancreatic cancer has an extremely poor prognosis, and the clinical drugs for the treatment of pancreatic cancer are usually multi-drug combinations. Therefore, it is necessary to search for and find specific new bioactive agents against pancreatic cancer. Carabrone is a carabrane-type sesquiterpenolide extracted from Carpesium cernuum L., and this natural compound has been reported to be a potential anti-tumor agent. However, there are few reports on the function of carabrone related to anti-tumor activity in pancreatic cancer. Herein, cell experiments indicated that carabrone had anti-proliferation inhibition and anti-migration and anti-invasion activity against SW1990 cells. Furthermore, the tandem mass spectrometry and network pharmacology analysis showed that this activity may be related to the ferroptosis and Hippo signaling pathway. Taken together, our results demonstrated that carabrone exhibited prominent anti-pancreatic cancer activity and could be a promising agent against pancreatic cancer.
Assuntos
Asteraceae , Ferroptose , Neoplasias Pancreáticas , Asteraceae/química , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias PancreáticasRESUMO
Natural products (NPs) were a rich source of diverse bioactive molecules. Most anti-tumor agents were built on natural scaffolds. Nardostachys jatamansi DC. was an important plant used to process the traditional Chinese herbal medicines "gansong". Pancreatic cancer was the fourth most common cause of cancer-related death in the world. Hence, there was an urgent need to develop novel agents for the treatment of pancreatic cancer. In this paper, nardoguaianone L (G-6) is isolated from N. jatamansi, which inhibited SW1990 cells colony formation and cell migration, and induced cell apoptosis. Furthermore, we analyzed the differential expression proteins after treatment with G-6 in SW1990 cells by using iTRAQ/TMT-based quantitative proteomics technology, and the results showed that G-6 regulated 143 proteins' differential expression by GO annotation, including biological process, cellular component, and molecular function. Meanwhile, KEGG enrichment found that with Human T-cell leukemia virus, one infection was the most highly enhanced pathway. Furthermore, the MET/PTEN/TGF-ß pathway was identified as a significant pathway that had important biological functions, including cell migration and motility by PPI network analysis in SW1990 cells. Taken together, our study found that G-6 is a potential anti-pancreatic cancer agent with regulation of MET/PTEN/TGF-ß pathway.
Assuntos
Nardostachys , Neoplasias , Humanos , Apoptose , Fator de Crescimento Transformador betaRESUMO
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide and is known as "the king of cancers". Currently, gemcitabine (GEM) as the clinical drug of choice for chemotherapy of advanced pancreatic cancer has poor drug sensitivity and ineffective chemotherapy. Nardoguaianone L (G-6) is a novel guaiane-type sesquiterpenoid isolated from Nardostachys jatamansi DC., and it exhibits anti-tumor activity. Based on the newly discovered G-6 with anti-pancreatic cancer activity in our laboratory, this paper aimed to evaluate the potential value of the combination of G-6 and GEM in SW1990 cells, including cell viability, cell apoptosis, colony assay and tandem mass tags (TMT) marker-based proteomic technology. These results showed that G-6 combined with GEM significantly inhibited cell viability, and the effect was more obvious than that with single drug. In addition, the use of TMT marker-based proteomic technology demonstrated that the AGE-RAGE signaling pathway was activated after medication-combination. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) assays were used to validate the proteomic results. Finally, apoptosis was detected by flow cytometry. In conclusion, G-6 combined with GEM induced an increase in ROS level and a decrease in MMP in SW1990 cells through the AGE-RAGE signaling pathway, ultimately leading to apoptosis. G-6 improved the effect of GEM chemotherapy and may be used as a potential combination therapy for pancreatic cancer.
Assuntos
Nardostachys , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio/farmacologia , Proteômica , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Apoptose , Proliferação de Células , Gencitabina , Neoplasias PancreáticasRESUMO
Chicken claw products with their unique texture are loved by consumers, and cooking is a key step to affect the taste of chicken claw consumption, through the moderate hydrolysis of proteins and a series of physicochemical changes, so that the chicken claw gets tender and presents a crispy taste, but the current research on the optimal cooking conditions for chicken claw is still relatively small. In the present work, combinations of time (11, 13, 15, 17, and 19 min) and temperature (82, 86, 90, 94, and 98°C) were applied to the cooking of chicken claws. The effects of different cooking conditions on the quality characteristics of chicken claws were investigated, with special emphasis on the cooking loss rate, color, texture properties, lipid oxidation, myofibrillar fragmentation index (MFI), and total sulfhydryl content. The results showed that the cooking loss rate, lipid oxidation, and MFI value of chicken claws gradually increased, and the total color difference (∆E), puncture force, shear force, and total sulfhydryl content gradually decreased with the increase of cooking temperature and cooking time. Overall, chicken claws cooked at 86, 90, and 94°C for 15 and 17 min had better texture and flavor.
RESUMO
Background: The crucial role of inflammation in aortic aneurysm (AA) is gaining prominence, while there is still a lack of key cytokines or targets for effective clinical translation. Methods: Mendelian randomization (MR) analysis was performed to identify the causal relationship between 91 circulating inflammatory proteins and AA and between 731 immune traits and AA. Bulk RNA sequencing data was utilized to demonstrate the expression profile of the paired ligand-receptor. Gene enrichment analysis, Immune infiltration, and correlation analysis were employed to deduce the potential role of CX3CR1. We used single-cell RNA sequencing data to pinpoint the localization of CX3CL1 and CX3CR1, which was further validated by multiplex immunofluorescence staining. Cellchat analysis was utilized to infer the CX3C signaling pathway. Trajectory analysis and the Cytosig database were exploited to determine the downstream effect of CX3CL1-CX3CR1. Results: We identified 4 candidates (FGF5, CX3CL1, IL20RA, and SCF) in multiple two-sample MR analyses. Subsequent analysis of the expression profile of the paired receptor revealed the significant upregulation of CX3CR1 in AA and its positive correlation with pro-inflammatory macrophages. Two sample MR between immune cell traits and AA demonstrated the potential causality between intermediate monocytes and AA. We finally deciphered in single-cell sequencing data that CX3CL1 sent by endothelial cells (ECs) acted on CX3CR1 of intermediated monocytes, leading to its recruitment and pro-inflammatory responses. Conclusion: Our study presented a genetic insight into the pathogenetic role of CX3CL1-CX3CR1 in AA, and further deciphered the CX3C signaling pathway between ECs and intermediate monocytes.
Assuntos
Aneurisma Aórtico , Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Análise da Randomização Mendeliana , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Transdução de Sinais , Predisposição Genética para DoençaRESUMO
The prevalence of calcific aortic valve disease (CAVD) remains substantial while there is currently no medical therapy available. Forkhead box O1 (FOXO1) is known to be involved in the pathogenesis of cardiovascular diseases, including vascular calcification and atherosclerosis; however, its specific role in calcific aortic valve disease remains to be elucidated. In this study, we identified FOXO1 significantly down-regulated in the aortic valve interstitial cells (VICs) of calcified aortic valves by investigating clinical specimens and GEO database analysis. FOXO1 silencing or inhibition promoted VICs osteogenic differentiation in vitro and aortic valve calcification in Apoe-/- mice, respectively. We identified that FOXO1 facilitated the ubiquitination and degradation of RUNX2, which process was mainly mediated by SMAD-specific E3 ubiquitin ligase 2 (SMURF2). Our discoveries unveil a heretofore unacknowledged mechanism involving the FOXO1/SMURF2/RUNX2 axis in CAVD, thereby proposing the potential therapeutic utility of FOXO1 or SMURF2 as viable strategies to impede the progression of CAVD.
Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Subunidade alfa 1 de Fator de Ligação ao Core , Proteína Forkhead Box O1 , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Masculino , Osteogênese/genética , Modelos Animais de Doenças , Diferenciação CelularRESUMO
Cold-eating rabbit is a traditional Chinese delicacy made by the process of pickling and frying. To explore the relationship between the flavor of cold-eating rabbit and the production process, this study investigated the changes of nucleotides, free amino acids, fatty acids, and volatile flavor substances in diced, marinated for 10 min, marinated for 20 min, fried for 5 min, re-fried for 10 min, re-fried for 15 min, re-fried for 20 min, seasoned and fried, and in the finished product, and analyzed the changes of flavor substances in deboned rabbit at different processing stages. Results showed that the content of 5'-inosine monophosphate (IMP) increased significantly (p < .05), indicating that the degradation pathway mainly involved IMP. In total, 17 free amino acids were detected, the contents of which increased significantly (p < .05). In addition, 27 medium- and long-chain fatty acids were detected. The total concentration of free fatty acids decreased in the fresh rabbit meat-marinated 20 min stage (p < .05), then increased in the fried 5 min-fried 20 min stage (p < .05), and finally decreased in the fried with spices-finished stage (p < .05). Seventy-seven volatile flavor substances were detected, and the 15-minute frying stage was key in producing the volatile flavor substances.
RESUMO
Viral myocarditis (VMC), characterized by viral infection-induced inflammation, is a life-threatening disease associated with dilated cardiomyopathy or heart failure. Innate immunity plays a crucial role in the progression of inflammation, in which inflammasomes provide a platform for the secretion of cytokines and mediate pyroptosis. Inflammasomes are rising stars gaining increasing attention. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the caspase recruitment domain-containing protein 8 (CARD8) inflammasome, and the caspase-11 inflammasome are three inflammasomes that were reported to affect the process and prognosis of VMC. These inflammasomes can be activated by a wide range of cellular events. Accumulating evidence has suggested that inflammasomes are involved in different stages of VMC, including the trigger and progression of myocardial injury and remodeling after infection. In this review, we summarized the pathways involving inflammasomes in VMC and discussed the potential therapies targeting inflammasomes and related pathways.
Assuntos
Miocardite , Viroses , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismoRESUMO
Objective: To evaluate the impact of concomitant valve surgery on the prognosis of patients who experienced coronary artery bypass graft (CABG) with/without ventricular reconstruction for the ventricular aneurysm. Methods: In our department, 354 patients underwent CABG with/without ventricular reconstruction for a ventricular aneurysm from July 23rd, 2000 to December 23rd, 2022. A total of 77 patients received concomitant valve surgery, 37 of whom underwent replacement, and 40 of whom underwent repair. The baseline characteristics, prognostic, and follow-up information were statically analyzed. Univariate and multivariate Cox regression analyses were applied to identify the risk factors of long-term outcomes. Results: Compared with patients who did not undergo valvular surgery, patients who experienced concomitant valve surgical treatments had a significantly lower survival rate (p = 0.00022) and a longer total mechanical ventilation time. Subgroup analysis indicated that the options of repair or replacement exhibited no statistically significant difference in postoperative mortality (p = 0.44) and prognosis. The multivariate Cox regression analysis suggested that the pre-operative cholesterol level (HR = 1.68), postoperative IABP (HR = 6.29), NYHA level (HR = 2.84), and pre-operative triglyceride level (HR = 1.09) were independent and significant predictors for overall all-cause mortality after surgery. Conclusion: Concomitant valve surgery was considerably related to a higher risk of postoperative mortality in patients with post-infarction ventricle aneurysms who underwent surgical treatments. No significant difference in the prognosis outcomes was observed between the operating methods of repair or replacement valve surgery.
RESUMO
Lappaconitine (LA), a diterpenoid alkaloid extracted from the root of Aconitum sinomontanum Nakai, exhibits broad pharmacological effects, including anti-tumor activity. The inhibitory effect of lappaconitine hydrochloride (LH) on HepG2 and HCT-116 cells and the toxicity of lappaconitine sulfate (LS) on HT-29, A549, and HepG2 cells have been described. But the mechanisms of LA against human cervical cancer HeLa cells still need to be clarified. This study was designed to investigate the effects and molecular mechanisms of lappaconitine sulfate (LS) on the growth inhibition and apoptosis in HeLa cells. The cell viability and proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2´-deoxyuridine (EdU) assay, respectively. The cell cycle distribution and apoptosis were detected by flow cytometry analysis and 4', 6-diamidino-2-phenylindole (DAPI) staining. The mitochondrial membrane potential (MMP) was determined through the 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimi-dazolyl carbocyanine iodide (JC-1) staining. The cell cycle arrest-, apoptosis-, and the phosphatidylinositol-3-kinase/protein kinase B/glycogen synthase kinase 3ß (PI3K/AKT/GSK3ß) pathway-related proteins were estimated by western blot analysis. LS markedly reduced the viability and suppressed the proliferation of HeLa cells. LS induced G0/G1 cell cycle arrest through the inhibition of Cyclin D1, p-Rb, and induction of p21 and p53. Furthermore, LS triggered apoptosis through the activation of mitochondrial-mediated pathway based on decrease of Bcl-2/Bax ratio and MMP and activation of caspase-9/7/3. Additionally, LS led to constitutive downregulation of the PI3K/AKT/GSK3ß signaling pathway. Collectively, LS inhibited cell proliferation and induced apoptosis through mitochondrial-mediated pathway by suppression of the PI3K/AKT/GSK3ß signaling pathway in HeLa cells.
Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células HeLa , Glicogênio Sintase Quinase 3 beta/metabolismo , Sulfatos/farmacologia , Transdução de Sinais , Apoptose , Proliferação de Células , Linhagem Celular TumoralRESUMO
Background: The purpose of this study was to investigate the prognostic significance of serum albumin to creatinine ratio (ACR) in patients receiving heart transplantation of end-stage heart failure. Methods: From January 2015 to December 2020, a total of 460 patients who underwent heart transplantation were included in this retrospective analysis. According to the maximum Youden index, the optimal cut-off value was identified. Kaplan-Meier methods were used to describe survival rates, and multivariable analyses were conducted with Cox proportional hazard models. Meanwhile, logistic regression analysis was applied to evaluate predictors for postoperative complications. The accuracy of risk prediction was evaluated by using the concordance index (C-index) and calibration plots. Results: The optimal cut-off value was 37.54 for ACR. Univariable analysis indicated that recipient age, IABP, RAAS, BB, Hb, urea nitrogen, D-dimer, troponin, TG, and ACR were significant prognostic factors of overall survival (OS). Multivariate analysis showed that preoperative ACR (HR: 0.504, 95% = 0.352-0.722, P < 0.001) was still an independent prognostic factor of OS. The nomogram for predicting 1-year and 5-year OS in patients who underwent heart transplantation without ACR (C-index = 0.631) and with ACR (C-index = 0.671). Besides, preoperative ACR level was a significant independent predictor of postoperative respiratory complications, renal complications, liver injury, infection and in-hospital death. Moreover, the calibration plot showed good consistency between the predictions by the nomogram for OS and the actual outcomes. Conclusion: Our research showed that ACR is a favorable prognostic indicator in patients of heart transplantation.
RESUMO
Cardiovascular diseases (CVDs) are the prevalent cause of mortality around the world. Activation of inflammasome contributes to the pathological progression of cardiovascular diseases, including atherosclerosis, abdominal aortic aneurysm, myocardial infarction, dilated cardiomyopathy, diabetic cardiomyopathy, heart failure, and calcific aortic valve disease. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a critical role in the innate immune response, requiring priming and activation signals to provoke the inflammation. Evidence shows that NLRP3 inflammasome not only boosts the cleavage and release of IL-1 family cytokines, but also leads to a distinct cell programmed death: pyroptosis. The significance of NLRP3 inflammasome in the CVDs-related inflammation has been extensively explored. In this review, we summarized current understandings of the function of NLRP3 inflammasome in CVDs and discussed possible therapeutic options targeting the NLRP3 inflammasome.
RESUMO
AIMS: Our study aimed to investigate changes in the prevalence of gestational diabetes mellitus (GDM) in the COVID-19 pandemic and postpandemic era and the risk of adverse pregnancy outcomes in pregnant women diagnosed with GDM during the blockade period. METHODS: First, we investigated changes in the prevalence of GDM and the population undergoing oral glucose tolerance tests (OGTT) after the COVID-19 pandemic. We then collected clinical information from pregnant women diagnosed with GDM to explore the risk of adverse pregnancy outcomes in pregnant women with GDM during the COVID-19 pandemic. RESULTS: After the COVID-19 pandemic, the proportion of pregnant women in the total number of outpatient OGTT tests decreased yearly. The ratio was 81.30%, 79.71%, and 75.48% from 2019 to 2021, respectively, with the highest proportion of pregnant women in February 2020 (92.03%). The prevalence of GDM was higher in March 2020 compared to the same period in 2019. However, from 2019 to 2021, the prevalence decreased year by year with 21.46%, 19.81%, and 18.48%, respectively. The risk of adverse pregnancy outcomes for pregnant women diagnosed with GDM during the most severe period of the COVID-19 pandemic did not differ from before the COVID-19 pandemic. CONCLUSIONS: After the COVID-19 pandemic, the prevalence of GDM increased during the most severe period of the epidemic, but the overall prevalence of GDM decreased year by year. In addition, the pandemic did not change the risk of adverse pregnancy outcomes in pregnant women with GDM.
Assuntos
COVID-19 , Diabetes Gestacional , COVID-19/epidemiologia , China/epidemiologia , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiologia , Feminino , Humanos , Pandemias , Gravidez , Resultado da Gravidez/epidemiologia , Estudos Retrospectivos , Fatores de RiscoRESUMO
Vascular calcification (VC) is characterized by calcium phosphate deposition in blood vessel walls and is associated with many diseases, as well as increased cardiovascular morbidity and mortality. However, the molecular mechanisms underlying of VC development and pathogenesis are not fully understood, thus impeding the design of molecular-targeted therapy for VC. Recently, several studies have shown that endoplasmic reticulum (ER) stress can exacerbate VC. The ER is an intracellular membranous organelle involved in the synthesis, folding, maturation, and post-translational modification of secretory and transmembrane proteins. ER stress (ERS) occurs when unfolded/misfolded proteins accumulate after a disturbance in the ER environment. Therefore, downregulation of pathological ERS may attenuate VC. This review summarizes the relationship between ERS and VC, focusing on how ERS regulates the development of VC by promoting osteogenic transformation, inflammation, autophagy, and apoptosis, with particular interest in the molecular mechanisms occurring in various vascular cells. We also discuss, the therapeutic effects of ERS inhibition on the progress of diseases associated with VC are detailed.
RESUMO
[This corrects the article DOI: 10.3389/fcvm.2022.874133.].
RESUMO
Purpose: To evaluate the influence of transfusion amount of blood components on the prognosis of patients after heart transplantation (HTx). Methods: From 1 January 2015 to 31 December 2020, 568 patients underwent HTx in our institute. A total of 416 recipients with complete datasets were enrolled in the study for final statistical analysis according to the inclusion criteria. The optimal cut-off values for intraoperative transfusion of red blood cell (RBC), platelet, and plasma were determined with receiver operating curve analysis. Univariate and multivariate Cox regression analyses were applied to compare baseline data of patients divided by the transfusion amounts of RBC, platelet, and plasma. Propensity score matching was used to enable the direct comparison of outcomes. Results: The Kaplan-Meier analysis revealed that transfusion amounts of RBC and plasma were independently associated with overall mortality, increased intensive care unit stay time, and major adverse events after transplantation. The multivariate Cox regression analysis suggested that neurological complications (p = 0.001), liver damage (p = 0.011), and respiratory complications (p = 0.044) were independent risk factors for overall mortality after HTx. Combining indicators presented a good predicting effect of peritransplant period mortality (AUC = 0.718). Conclusion: The mortality of HTx was significantly related to the high-amount transfusion of RBC and plasma. Comprehensively considering the components of blood transfusion obtained better predictive results of peritransplant period survival than solely considering a single component.
RESUMO
Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.
Assuntos
Lactoferrina , Substâncias Protetoras , Envelhecimento/efeitos dos fármacos , Animais , Anti-Inflamatórios , Humanos , Lactoferrina/química , Lactoferrina/farmacologia , Camundongos , Modelos Biológicos , Substâncias Protetoras/química , Substâncias Protetoras/farmacologiaRESUMO
Five previously unreported terpenoids, together with fifteen known analogs, were isolated from a methanol extract of the roots and rhizomes of Nardostachys jatamansi. Their structures, including absolute configurations, were elucidated by spectroscopic data and electronic circular dichroism (ECD) spectra analyses, as well as single-crystal X-ray diffraction for crystalline compounds. Structurally, (4R,5S,6S,7R)-1(10)-aristolane-8,9-diacid is a novel 8,9-dicarboxylic acid derivative of aristolane-type sesquiterpenoid. (4R,6S,7R,10S)-10-Hydroxyguaia-1(5)-6,7-epoxy-2-one is an undescribed analogue of nardoguaianone K, with a rare 6,7-epoxide group. (4R,5R,6R,8R)-1(10)-Isonardosinone-8-ol-9-one-7,11-lactone is an isonardosinane-type sesquiterpene bearing a γ-lactone ring. Dinardokanshone F is a rare example of a sesquiterpene dimer from N. jatamansi connected by an oxo bridge. The isolates were evaluated for their cytotoxic activity against four human pancreatic cancer cell lines (CFPAC-1, PANC-1, CAPAN-2 and SW1990). Compound epoxynardosinone exhibited significant cytotoxicity against CAPAN-2 cell lines with IC50 value of 2.60 ± 1.85 µM. 1-Hydroxylaristolone displayed comparable cytotoxicity on CFPAC-1 cell lines (IC50 1.12 ± 1.19 µM), compared to Taxol (IC50 0.32 ± 0.13 µM). 1-Hydroxylaristolone, 1(10)-aristolane-9ß-ol, 1(10)-aristolen-2-one, alpinenone, valtrate isovaleroyloxyhydrine and nardostachin displayed stronger cytotoxicity against PANC-1 cell lines with IC50 values ranging from 0.01 ± 0.01 to 6.50 ± 1.10 µM. 1(10)-Aristolane-9ß-ol, 10-hydroxyguaia-1(5)-6,7-epoxy-2-one, nardoguaianone K, nardonoxide, epoxynardosinone, 1(10)-isonardosinone-8-ol-9-one-7,11-lactone, valtrate isovaleroyloxyhydrine and nardostachin showed remarkable cytotoxicity against SW1990 cell lines with IC50 values ranging from 0.07 ± 0.05 to 4.82 ± 6.96 µM. Furthermore, the primary mechanistic study of nardostachin demonstrated that it induced cell apoptosis via the mitochondria-dependent pathway, and induced SW1900 cell arrest at G2/M phase.