Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 263(1): 99-112, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411280

RESUMO

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosforilação , Proteína Quinase D2 , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Serina , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Desmogleína 2/genética , Desmogleína 2/metabolismo
2.
Biosci Rep ; 42(5)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35521959

RESUMO

BACKGROUND: Exploration of serum biomarkers for early detection of upper gastrointestinal cancer is required. Here, we aimed to evaluate the diagnostic potential of serum desmoglein-2 (DSG2) in patients with esophageal squamous cell carcinoma (ESCC) and esophagogastric junction adenocarcinoma (EJA). METHODS: Serum DSG2 levels were measured by enzyme-linked immunosorbent assay (ELISA) in 459 participants including 151 patients with ESCC, 96 with EJA, and 212 healthy controls. Receiver operating characteristic (ROC) curves were used to evaluate diagnostic accuracy. RESULTS: Levels of serum DSG2 were significantly higher in patients with ESCC and EJA than those in healthy controls (P<0.001). Detection of serum DSG2 demonstrated an area under the ROC curve (AUC) value of 0.724, sensitivity of 38.1%, and specificity of 84.8% for the diagnosis of ESCC in the training cohort, and AUC 0.736, sensitivity 58.2%, and specificity 84.7% in the validation cohort. For diagnosis of EJA, measurement of DSG2 provided a sensitivity of 29.2%, a specificity of 90.2%, and AUC of 0.698. Similar results were observed for the diagnosis of early-stage ESCC (AUC 0.715 and 0.722, sensitivity 36.3 and 50%, and specificity 84.8 and 84.7%, for training and validation cohorts, respectively) and early-stage EJA (AUC 0.704, sensitivity 44.4%, and specificity 86.9%). Analysis of clinical data indicated that DSG2 levels were significantly associated with patient age and histological grade in ESCC (P<0.05). CONCLUSION: Serum DSG2 may be a diagnostic biomarker for ESCC and EJA.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Adenocarcinoma/diagnóstico , Biomarcadores Tumorais , Desmogleína 2 , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/patologia , Junção Esofagogástrica/patologia , Humanos
3.
J Orthop Translat ; 31: 41-51, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804799

RESUMO

OBJECTIVES: Vascularization is an essential step in successful bone tissue engineering. The induction of angiogenesis in bone tissue engineering can be enhanced through the delivery of therapeutic agents that stimulate vessel and bone formation. In this study, we show that cucurbitacin B (CuB), a tetracyclic terpene derived from Cucurbitaceae family plants, facilitates the induction of angiogenesis in vitro. METHODS: We incorporated CuB into a biodegradable poly (lactide-co-glycolide) (PLGA) and ß-tricalcium phosphate (ß-TCP) biomaterial scaffold (PT/CuB) Using 3D low-temperature rapid prototyping (LT-RP) technology. A rat skull defect model was used to verify whether the drug-incorporated scaffold has the effects of angiogenesis and osteogenesis in vivo for the regeneration of bone defect. Cytotoxicity assay was performed to determine the safe dose range of the CuB. Tube formation assay and western blot assay were used to analyze the angiogenesis effect of CuB. RESULTS: PT/CuB scaffold possessed well-designed bio-mimic structure and improved mechanical properties. CuB was linear release from the composite scaffold without affecting pH value. The results demonstrated that the PT/CuB scaffold significantly enhanced neovascularization and bone regeneration in a rat critical size calvarial defect model compared to the scaffold implants without CuB. Furthermore, CuB stimulated angiogenic signaling via up-regulating VEGFR2 and VEGFR-related signaling pathways. CONCLUSION: CuB can serve as promising candidate compound for promoting neovascularization and osteogenesis, especially in tissue engineering for repair of bone defects. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This study highlights the potential use of CuB as a therapeutic agent and strongly support its adoption as a component of composite scaffolds for tissue-engineering of bone repair.

4.
J Orthop Translat ; 22: 92-100, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440504

RESUMO

BACKGROUND: Angiogenesis plays an important role in the development of rheumatoid arthritis (RA), which increases the supply of nutrients, cytokines, and inflammatory cells to the synovial membrane. Genistein (GEN), a soy-derived isoflavone, has been validated that can effectively inhibit the angiogenesis of several tumours. We thus carried out a study in vitro to investigate the effect of GEN in vascular endothelial growth factor (VEGF) expression and angiogenesis induced by the inflammatory environment of RA. METHODS: MH7A cells were used to verify whether GEN can inhibit the expression of VEGF in MH7A cells under inflammatory conditions and demonstrate the mechanism. EA.hy926 â€‹cells were used to verify whether GEN can inhibit the migration and tube formation of vascular endothelial cells in inflammatory environment. RESULTS: GEN dose-dependently inhibited the expression and secretion of interleukin (IL)-6 and VEGF, as well as the nucleus translocation of Signal transducer and activator of transcription 3 (STAT3) in MH7A. Furthermore, GEN inhibited IL-6-induced vascular endothelial cell migration and tube formation in vitro. CONCLUSION: GEN inhibits IL-6-induced VEGF expression and angiogenesis partially through the Janus kinase 2 (JAK2)/STAT3 pathway in RA, which has provided a novel insight into the antiangiogenic activity of GEN in RA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Our study provides scientific guidance for the clinical translational research of GEN in the RA treatment.

5.
J Orthop Translat ; 12: 16-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29662775

RESUMO

Heterotopic ossification (HO) is a pathological phenomenon in which ectopic lamellar bone forms in soft tissues. HO involves many predisposing factors, including congenital and postnatal factors. Postnatal HO is usually induced by fracture, burn, neurological damage (brain injury and spinal cord injury) and joint replacement. Recent studies have found that patients who suffered from bone fracture combined with severe traumatic brain injury (S-TBI) are at a significantly increased risk for HO occurrence. Thus, considerable research focused on the influence of S-TBI on fracture healing and bone formation, as well as on the changes in various osteogenic factors with S-TBI occurrence. Brain damage promotes bone formation, but the exact mechanisms underlying bone formation and HO after S-TBI remain to be clarified. Hence, this article summarises the findings of previous studies on the relationship between S-TBI and HO and discusses the probable causes and mechanisms of HO caused by S-TBI. The translational potential of this article: A better understanding of the probable causes of traumatic brain injury-induced HO can provide new perspectives and ideas in preventing HO and may support to design more targeted therapies to reduce HO or enhance the bone formation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa