Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171478, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453071

RESUMO

Shallow-water ponds represent the hotspots of greenhouse gas (GHG) emissions. Most current studies focus on the temporal dynamics for GHGs in water, with little consideration given to the effects of weather changes. In this study, we measured and compared the concentrations and fluxes of CO2, CH4, and N2O from a pond in Northeast China under different meteorological conditions. Results showed that the rates of CO2, CH4, and N2O emissions from pond into the atmosphere during strong winds were 85.85 ± 7.55 mmol m-2 d-1, 22.05 ± 6.80 mmol m-2 d-1, and 10.87 ± 0.72 µmol m-2 d-1, respectively, significantly higher than those measured during non-rain weather. Among which, over 88 % of CH4 emissions were contributed by ebullition. Meanwhile, the CO2 and N2O flux were also significantly higher during heavy rainfall, reaching 100.05 ± 19.76 mmol m-2 d-1 and 5.90 ± 1.03 µmol m-2 d-1, respectively. Strong winds and precipitation induced sediment disturbances, high gas transport coefficients, reduced photosynthesis and oxygen greatly promoted the GHGs escape evasion. Wind speed, air pressure, solar radiation, and dissolved oxygen in water were important influencing factors. Our results emphasize the importance of capturing short-term weather disturbance events, especially rainstorm and strong winds, to accurately assess the annual GHG budget from these shallow water ecosystems.

2.
Ying Yong Sheng Tai Xue Bao ; 32(10): 3531-3538, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34676714

RESUMO

We sampled Pinus massoniana and Cunninghamia lanceolata in both plantation and natural forests in central and western Fujian Province, China. Using tree-ring width, tree-ring width index, and basal area increment, we reconstructed the annual growth of 109 conifer individuals from four sites for the 20-year period from 1993 to 2012. We then calculated resistance, recovery, and resilience indices of those trees in response to two consecutive extreme droughts (2003-2004 and 2011) and analyzed the differences in resistance and resilience between plantations and natural fore-sts. The results showed that there were temporal differences in moisture requirements between P. massoniana and C. lanceolata, which accounted for their inconsistent responses to drought in 2003-2004. For both species, drought induced a marked growth reduction, without any clear lag effect. The growth responses during and following the 2003-2004 drought were significantly stronger than that for the 2011 drought. Those results indicated that P. massoniana was more resilient to drought stress than C. lanceolata, and the natural forests were more sensitive than plantations, but with stronger capacity to recover. C. lanceolata plantations were more susceptible to frequent extreme drought events. To mitigate the vulnerability of plantation trees to more frequent droughts in the future, we suggested select trees from genetic provenances with strong drought resistance.


Assuntos
Cunninghamia , Pinus , China , Secas , Florestas , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa