Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 151: 110857, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980393

RESUMO

Self-cooling phase-transition units were built and tested to successfully carryout pressure shift freezing, high pressure thawing and subzero temperature microbial destruction kinetics. The design of these equipment has been progressively improved over the years as highlighted in this paper. Phase transition data on grape & apple juices, and sodium chloride (20%) & glucose solutions (20%) in Ice I were gathered and modeled using Simon-like and polynomial equations. Factors influencing the Ice I and water to Ice III phase transition position were evaluated, and found to be mainly affected by the solute in the aqueous solution. For pressure shifting freezing and pressure assisting freezing to Ice III, water and 20% sodium chloride solution were successfully employed and verified as cooling media for creating the temperature change pathway of potato and carrot. Using sodium chloride solution (20%) as the cooling medium, the phase transition pathway of apple juice and grape juice under high pressure for the phase transition of Ice I and metastable water to Ice III was established. This could be used in kinetic studies. The developed cooling unit concepts can use in any commercial high pressure equipment for subzero temperature treatment of foods without externally supplied cooling.


Assuntos
Gelo , Laboratórios , Congelamento , Cinética , Temperatura
2.
Foods ; 9(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255959

RESUMO

Non-thermal processing of milk can potentially reduce nutrient loss, and a low-temperature-high-pressure (LTHP) treatment is considered as a promising alternative to thermal treatment, attracting considerable attention in recent years. The effect of LTHP treatment (-25 °C, 100-400 MPa) on the phase transition behavior of frozen milk was evaluated. The lethal and injured effects of different pressures and cycle numbers on E. coli in frozen milk were studied by using selective and non-selective enumeration media. Results from the gathered transient time-temperature-pressure data showed that pressures over 300 MPa could induce a phase transition from Ice I to Ice III. The treatment at -25 °C and 300 MPa could achieve a lethal effect similar to the two-cycle treatment of 400 MPa at room temperature. This meant that LTHP conditions can lower the operating pressure by at least 100 MPa or reduce the operation from two cycle to one cycle. Increasing the number of pressure cycles enhanced the lethal effects, which was not additive, but resulted in a transformation of part of the injured cells into dead cells. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) provided direct evidence for the breakdown of cell membrane and cell walls by phase transitions. Combined with a designed internal cooling device, the LTHP process can be expected to be a more attractive alternative to non-thermal processing for the dairy industry.

3.
Sci Total Environ ; 583: 19-28, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28109663

RESUMO

Accurate depiction of VOCs emission characteristics is essential for the formulation of VOCs control strategies. As one of the continuous efforts in improving VOCs emission characterization in the Pearl River Delta (PRD) region, this study targeted on surface coating industry, the most important VOCs emission sources in the PRD. Sectors in analysis included shipbuilding coating, wood furniture coating, metal surface coating, plastic surface coating, automobile coating and fabric surface coating. Sector-based field measurement was conducted to characterize VOCs emission factors and source profiles in the PRD. It was found that the raw material-based VOCs emission factors for these six sectors ranged from 0.34 to 0.58kg VOCs per kg of raw materials (kg·kg-1) while the emission factors based on the production yield varied from 0.59kg to 13.72t VOCs for each production manufactured. VOCs emission factors of surface coating industry were therefore preferably calculated based on raw materials with low uncertainties. Source profiles differed greatly among different sectors. Aromatic was the largest group for shipbuilding coating, wood furniture coating, metal surface coating and automobile coating while the oxygenated VOCs (OVOCs) were the most abundant in the plastic and fabric surface coating sectors. The major species of aromatic VOCs in each of these six sectors were similar, mainly toluene and m/p-xylene, while the OVOCs varied among the different sectors. VOCs profiles in the three processes of auto industry, i.e., auto coating, auto drying and auto repairing, also showed large variations. The major species in these sectors in the PRD were similar with other places but the proportions of individual compounds were different. Some special components were also detected in the PRD region. This study highlighted the importance of updating local source profiles in a comprehensive and timely manner.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa