Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nucleic Acids Res ; 52(12): 7063-7080, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38808662

RESUMO

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC). PHF2 loss impairs DNA replication due to the activation of dormant replication origins in NSC. Notably, the PHF2/RAD21 co-bound genomic regions are characterized by CTCF enrichment and epigenomic features that resemble efficient, active replication origins, and can act as boundaries to separate adjacent domains. Accordingly, PHF2 loss weakens TADs and chromatin loops at the co-bound loci due to reduced RAD21 occupancy. The observed topological and DNA replication defects in PHF2 KO NSC support a cohesin-dependent mechanism. Furthermore, we demonstrate that the PHF2/RAD21 complex exerts little effect on gene regulation, and that PHF2's histone-demethylase activity is dispensable for normal DNA replication and proliferation of NSC. We propose that PHF2 may serve as a topological accessory to cohesin for cohesin localization to TADs and chromatin loops, where cohesin represses dormant replication origins directly or indirectly, to sustain DNA replication in NSC.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Coesinas , Replicação do DNA , Proteínas de Ligação a DNA , Células-Tronco Neurais , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Cromatina/metabolismo , Origem de Replicação , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Genoma/genética , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Camundongos Knockout
2.
Endocr J ; 69(2): 131-137, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34497243

RESUMO

Posterior recurrent laryngeal nerve (RLN) lymph node dissection remains controversial in the operation of thyroid cancer, especially in cases of papillary thyroid microcarcinoma (PTMC). The present study aimed to evaluate the risk factors for posterior RLN lymph node metastasis in patients with PTMC. Two hundred and thirty-nine patients pathologically diagnosed with PTMC after surgery between June 2016 and June 2017 were included. Risk factors including age, sex, tumor diameter, multiple tumor focus, membrane invasion and lateral cervical lymph node metastasis condition, were analyzed, and their corresponding OR values were calculated. The results indicated that posterior RLN lymph node metastasis was pathologically identified in 27/239 patients. Membrane invasion (p = 0.024), VIa lymph node metastasis (p < 0.01), and lateral cervical lymph node metastasis (p < 0.01) were considered to be risk factors for posterior RLN lymph node metastasis. It is concluded that membrane invasion, VIa lymph node metastasis, and lateral cervical lymph node metastasis significantly increased the incidence of posterior RLN lymph node metastasis. Complete dissection of the posterior RLN lymph node was essential for patients with these risk factors.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Carcinoma Papilar/patologia , Humanos , Linfonodos/patologia , Estudos Retrospectivos , Fatores de Risco , Neoplasias da Glândula Tireoide/patologia , Tireoidectomia
3.
Comput Struct Biotechnol J ; 23: 3418-3429, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39386942

RESUMO

Dysregulation of adenosine-to-inosine (A-to-I) RNA editing has been implicated in cancer progression. However, a comprehensive understanding of how A-to-I RNA editing is incorporated into miRNA regulation to modulate gene expression in cancer remains unclear, given the lack of effective identification methods. To this end, we introduced an information theory-based algorithm named REMR to systematically identify 12,006 A-to-I RNA editing-mediated miRNA regulatory triplets (RNA editing sites, miRNAs, and genes) across ten major cancer types based on multi-omics profiling data from The Cancer Genome Atlas (TCGA). Through analyses of functional enrichment, transcriptional regulatory networks, and protein-protein interaction (PPI) networks, we showed that RNA editing-mediated miRNA regulation potentially affects critical cancer-related functions, such as apoptosis, cell cycle, drug resistance, and immunity. Furthermore, triplets can serve as biomarkers for classifying cancer subtypes with distinct prognoses or drug responses, highlighting the clinical relevance of such regulation. In addition, an online resource (http://www.jianglab.cn/REMR/) was constructed to support the convenient retrieval of our findings. In summary, our study systematically dissected the RNA editing-mediated miRNA regulations, thereby providing a valuable resource for understanding the mechanism of RNA editing as an epitranscriptomic regulator in cancer.

4.
PeerJ ; 12: e17579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978755

RESUMO

Background: Lysyl oxidase enzymes (LOXs), as extracellular matrix (ECM) protein regulators, play vital roles in tumor progression by remodeling the tumor microenvironment. However, their roles in glioblastoma (GBM) have not been fully elucidated. Methods: The genetic alterations and prognostic value of LOXs were investigated via cBioPortal. The correlations between LOXs and biological functions/molecular tumor subtypes were explored in The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). After Kaplan‒Meier and Cox survival analyses, a Loxl1-based nomogram and prognostic risk score model (PRSM) were constructed and evaluated by time-dependent receiver operating characteristic curves, calibration curves, and decision curve analyses. Tumor enrichment pathways and immune infiltrates were explored by single-cell RNA sequencing and TIMER. Loxl1-related changes in tumor viability/proliferation and invasion were further validated by CCK-8, western blot, wound healing, and Transwell invasion assays. Results: GBM patients with altered LOXs had poor survival. Upregulated LOXs were found in IDH1-wildtype and mesenchymal (not Loxl1) GBM subtypes, promoting ECM receptor interactions in GBM. The Loxl1-based nomogram and the PRSM showed high accuracy, reliability, and net clinical benefits. Loxl1 expression was related to tumor invasion and immune infiltration (B cells, neutrophils, and dendritic cells). Loxl1 knockdown suppressed GBM cell proliferation and invasion by inhibiting the EMT pathway (through the downregulation of N-cadherin/Vimentin/Snai1 and the upregulation of E-cadherin). Conclusion: The Loxl1-based nomogram and PRSM were stable and individualized for assessing GBM patient prognosis, and the invasive role of Loxl1 could provide a promising therapeutic strategy.


Assuntos
Neoplasias Encefálicas , Transição Epitelial-Mesenquimal , Glioblastoma , Invasividade Neoplásica , Humanos , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/metabolismo , Transição Epitelial-Mesenquimal/genética , Prognóstico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Nomogramas , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/genética , Masculino , Microambiente Tumoral , Feminino , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Proliferação de Células , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
5.
Discov Oncol ; 14(1): 108, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351805

RESUMO

BACKGROUND: Homeobox A (HOXA) family is involved in the development of malignancies as either tumor suppressors or oncogenes. However, their roles in glioblastoma (GBM) and clinical significance have not been fully elucidated. METHODS: HOXA mutation and expressions in pan-cancers were investigated using GSCA and Oncomine, which in GBM were validated by cBioPortal, Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas (TCGA) datasets. Kaplan-Meier analyses were conducted to determine prognostic values of HOXAs at genetic and mRNA levels. Diagnostic roles of HOXAs in tumor classification were explored by GlioVis and R software. Independent prognostic HOXAs were identified using Cox survival analyses, the least absolute shrinkage and selection operator (LASSO) regression, quantitative real-time PCR, and immunohistochemical staining. A HOXAs-based nomogram survival prediction model was developed and evaluated using Kaplan-Meier analysis, time-dependent Area Under Curve, calibration plots, and Decision Curve Analysis in training and validation cohorts. RESULTS: HOXAs were highly mutated and overexpressed in pan-cancers, especially in CGGA and TCGA GBM datasets. Genetic alteration and mRNA expression of HOXAs were both found to be prognostic. Specific HOXAs could distinguish IDH mutation (HOXA1-7, HOXA9, HOXA13) and molecular GBM subtypes (HOXA1-2, HOXA9-11, HOXA13). HOXA1/2/3/10 were confirmed to be independent prognostic members, with high expressions validated in clinical GBM tissues. The HOXAs-based nomogram model exhibited good prediction performance and net benefits for patients in training and validation cohorts. CONCLUSION: HOXA family has diagnostic values, and the HOXAs-based nomogram model is effective in survival prediction, providing a novel approach to support the treatment of GBM patients.

6.
Inflammation ; 46(4): 1290-1304, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939977

RESUMO

Inflammatory responses after intracerebral hemorrhage (ICH) contribute to severe secondary brain injury, leading to poor clinical outcomes. However, the responsible genes for effective anti-inflammation treatment in ICH remain poorly elucidated. The differentially expressed genes (DEGs) of human ICH were explored by online GEO2R. Go and KEGG were used to explore the biological function of DEGs. Protein-protein interactions (PPI) were built in the String database. Critical modules of PPI were identified by a molecular complex detection algorithm (MCODE). Cytohubba was used to determine the hub genes. The mRNA-miRNA interaction network was built in the miRWalk database. The rat ICH model was applied to validate the key genes. A total of 776 DEGs were identified in ICH. Go and KEGG analyses indicated that DEGs were mainly involved in neutrophil activation and the TNF signaling pathway. GSEA analysis presented that DEGs were significantly enriched in TNF signaling and inflammatory response. PPI network was constructed in the 48 differentially expressed inflammatory response-related genes. The critical module of the PPI network was constructed by 7 MCODE genes and functioned as the inflammatory response. The top 10 hub genes with the highest degrees were identified in the inflammatory response after ICH. CCL20 was confirmed as a key gene and mainly expressed in neurons in the rat ICH model. The regulatory network between CCL20 and miR-766 was built, and the miR-766 decrease was confirmed in a human ICH dataset. CCL20 is a key biomarker of inflammatory response after intracerebral hemorrhage, providing a potential target for inflammatory intervention in ICH.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Humanos , Animais , Ratos , Redes Reguladoras de Genes , Biomarcadores , MicroRNAs/genética , Hemorragia Cerebral/genética , Biologia Computacional , Quimiocina CCL20/genética
7.
Brain Sci ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37626511

RESUMO

Glioblastoma (GBM) is a highly malignant and aggressive tumor with poor prognosis. Therefore, the discovery of new prognostic molecular markers is of great significance for clinical prognosis. The CXC chemokine receptor (CXCR) members play a key regulatory role in many cancers. In this study, we explore the clinical value and application of the CXCR members in primary glioblastoma. Two GBM datasets from The Cancer Genome Atlas (TCGA) and The China Glioma Genome Atlas (CGGA) databases were used to explore the relationship between differential expression of CXCRs and GBM subtypes as well as immune infiltration. C-X-C motif chemokine receptor 4 (CXCR4) was screened as an independent prognostic factor, and a nomogram and risk prediction model were developed and tested in the CGGA database using the TCGA database. Receiver operating curve (ROC) and decision curve analysis (DCA) found good accuracy and net benefit of the models. The correlation of CXCR4 with immune infiltration and tumor was analyzed using CancerSEA and TIMER. In in vitro experiments, we found that CXCR4 was significantly overexpressed in glioblastoma and was closely related to the inflammatory response of U251/U87 cells. CXCR4 is an excellent independent prognostic factor for glioblastoma and positively correlates with tumor inflammation.

8.
Front Genet ; 14: 1148126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284062

RESUMO

Background: Notch receptors (Notch 1/2/3/4), the critical effectors of the Notch pathway, participate in the tumorigenesis and progression of many malignancies. However, the clinical roles of Notch receptors in primary glioblastoma (GBM) have not been fully elucidated. Methods: The genetic alteration-related prognostic values of Notch receptors were determined in the GBM dataset from The Cancer Genome Atlas (TCGA). Two GBM datasets from TCGA and Chinese Glioma Genome Atlas (CGGA) were used to explore the differential expression between Notch receptors and IDH mutation status, and GBM subtypes. The biological functions of Notch Receptors were explored by Gene Ontology and KEGG analysis. The expression and prognostic significance of Notch receptors were determined in the TCGA and CGGA datasets and further validated in a clinical GBM cohort by immunostaining. A Notch3-based nomogram/predictive risk model was constructed in the TCGA dataset and validated in the CGGA dataset. The model performance was evaluated by receiver operating curves, calibration curves, and decision curve analyses. The Notch3-related phenotypes were analyzed via CancerSEA and TIMER. The proliferative role of Notch3 in GBM was validated in U251/U87 glioma cells by Western blot and immunostaining. Results: Notch receptors with genetic alterations were associated with poor survival of GBM patients. Notch receptors were all upregulated in GBM of TCGA and CGGA databases and closely related to the regulation of transcription, protein-lysine N-methyltransferase activity, lysine N-methyltransferase activity, and focal adhesion. Notch receptors were associated with Classical, Mesenchymal, and Proneural subtypes. Notch1 and Notch3 were closely correlated with IDH mutation status and G-CIMP subtype. Notch receptors displayed the differential expression at the protein level and Notch3 showed a prognostic significance in a clinical GBM cohort. Notch3 presented an independent prognostic role for primary GBM (IDH1 mutant/wildtype). A Notch3-based predictive risk model presented favorable accuracy, reliability, and net benefits for predicting the survival of GBM patients (IDH1 mutant/wildtype and IDH1 wildtype). Notch3 was closely related to immune infiltration (macrophages, CD4+ T cells, and dendritic cells) and tumor proliferation. Conclusion: Notch3-based nomogram served as a practical tool for anticipating the survival of GBM patients, which was related to immune-cell infiltration and tumor proliferation.

9.
Front Neurol ; 13: 912039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034290

RESUMO

Background: The chromobox family, a critical component of epigenetic regulators, participates in the tumorigenesis and progression of many malignancies. However, the roles of the CBX family members (CBXs) in glioblastoma (GBM) remain unclear. Methods: The mRNA expression of CBXs was analyzed in tissues and cell lines by Oncomine and Cancer Cell Line Encyclopedia (CCLE). The differential expression of CBXs at the mRNA level was explored in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases with the "beeswarm" R package. The protein expression of CBXs in GBM was further examined on Human Protein Atlas (HPA). The correlations between CBXs and IDH mutation and between CBXs and GBM subtypes were investigated in the TCGA portal and CGGA database with the "survminer" R package. The alteration of CBXs and their prognostic value were further determined via the cBioPortal and CGGA database with the "survival" R package. The univariate and multivariate analyses were performed to screen out the independent prognostic roles of CBXs in the CGGA database. Cytoscape was used to visualize the functions and related pathways of CBXs in GBM. U251 and U87 glioma cells with gene intervention were used to validate the role of CBX7/8 in tumor proliferation and invasion. Proliferation/invasion-related markers were conducted by Western blot and immunostaining. Results: CBXs presented significantly differential expressions in pan-cancers. CBX2/3/5/8 were upregulated, whereas CBX6/7 were downregulated at mRNA level in GBM of TCGA and CGGA databases. Similarly, high expression of CBX2/3/5 and low expression of CBX6/8 were further confirmed at the protein level in the HPA. CBX2/6/7 were positively correlated with IDH mutation and CBX1/2/4/5/8 were closely related to GBM subtypes. CBX7 and CBX8 presented the independent prognostic factors for GBM patient survival. GO and KEGG analyses indicated that CBXs were closely related to the histone H3-K36, PcG protein complex, ATPase, and Wnt pathway. The overexpression of CBX7 and underexpression of CBX8 significantly inhibited the proliferation and invasion of glioma cells in vivo and in vitro. Conclusion: Our results suggested that CBX7 and CBX8 served as independent prognostic indicators that promoted the proliferation and invasion of glioma cells, providing a promising strategy for diagnosing and treating GBM.

10.
Front Neurol ; 13: 1009253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324387

RESUMO

Introduction: Subarachnoid hemorrhage (SAH) is a severe hemorrhagic stroke with high mortality. However, there is a lack of clinical tools for predicting in-hospital mortality in clinical practice. LAR is a novel clinical marker that has demonstrated prognostic significance in a variety of diseases. Methods: Critically ill patients diagnosed and SAH with their data in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database and the eICU Collaborative Research Database (eICU-CRD) were included in our study. Multivariate logistic regression was utilized to establish the nomogram. Results: A total of 244 patients with spontaneous SAH in the MIMIC-IV database were eligible for the study as a training set, and 83 patients in eICU-CRD were included for external validation. Data on clinical characteristics, laboratory parameters and outcomes were collected. Univariate and multivariate logistic regression analysis identified age (OR: 1.042, P-value: 0.003), LAR (OR: 2.592, P-value: 0.011), anion gap (OR: 1.134, P-value: 0.036) and APSIII (OR: 1.028, P-value: < 0.001) as independent predictors of in-hospital mortality and we developed a nomogram model based on these factors. The nomogram model incorporated with LAR, APSIII, age and anion gap demonstrated great discrimination and clinical utility both in the training set (accuracy: 77.5%, AUC: 0.811) and validation set (accuracy: 75.9%, AUC: 0.822). Conclusion: LAR is closely associated with increased in-hospital mortality of patients with spontaneous SAH, which could serve as a novel clinical marker. The nomogram model combined with LAR, APSIII, age, and anion gap presents good predictive performance and clinical practicability.

11.
J Inflamm Res ; 15: 4873-4890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046663

RESUMO

Background: Ischemic injury in stroke is followed by extensive neurovascular inflammation and changes in ischemic penumbra gene expression patterns. However, the key molecules involved in the inflammatory response during the acute phase of ischemic stroke remain unclear. Methods: Gene expression profiles of two rat ischemic stroke-related data sets, GSE61616 and GSE97537, were downloaded from the GEO database for Gene Set Enrichment Analysis (GSEA). Then, GEO2R was used to screen differentially expressed genes (DEGs). Furthermore, 170 differentially expressed intersection genes were screened and analyzed for Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Candidate genes and miRNAs were obtained by DAVID, Metascape, Cytoscape, STRING, and TargetScan. Finally, the rat middle cerebral artery occlusion-reperfusion (MCAO/R) model was constructed, and qRT-PCR was used to verify the predicted potential miRNA molecule and its target genes. Results: GO and KEGG analyses showed that 170 genes were highly associated with inflammatory cell activation and cytokine production. After cluster analysis, seven hub genes highly correlated with post-stroke neuroinflammation were obtained: Cxcl1, Kng1, Il6, AnxA1, TIMP1, SPP1, and Ccl6. The results of TargetScan further suggested that miR-340-5p may negatively regulate SPP1, AnxA1, and TIMP1 simultaneously. In the ischemic penumbra of rats 24 h after MCAO/R, the level of miR-340-5p significantly decreased compared with the control group, while the concentration of SPP1, AnxA1, and TIMP1 increased. Time-course studies demonstrated that the mRNA expression levels of SPP1, AnxA1, and TIMP1 fluctuated dramatically throughout the acute phase of cerebral ischemia-reperfusion (I/R). Conclusion: Our study suggests that differentially expressed genes SPP1, TIMP1, and ANXA1 may play a vital role in the inflammatory response during the acute phase of cerebral ischemia-reperfusion injury. These genes may be negatively regulated by miR-340-5p. Our results may provide new insights into the complex pathophysiological mechanisms of secondary inflammation after stroke.

12.
Neuro Oncol ; 23(6): 905-919, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249476

RESUMO

BACKGROUND: Failure of glioblastoma (GBM) therapy is often ascribed to different types of glioblastoma stem-like cell (GSLC) niche; in particular, a hypoxic perivascular niche (HPVN) is involved in GBM progression. However, the cells responsible for HPVNs remain unclear. METHODS: Immunostaining was performed to determine the cells involved in HPVNs. A hypoxic chamber and 3-dimensional (3D) microfluidic chips were designed to simulate a HPVN based on the pathological features of GBM. The phenotype of GSLCs was evaluated by fluorescence scanning in real time and proliferation and apoptotic assays. The expression of JAG1, DLL4, and Hes1 was determined by immunostaining, ELISA, Western blotting, and quantitative PCR. Their clinical prognostic significance in GBM HPVNs and total tumor tissues were verified by clinical data and The Cancer Genome Atlas databases. RESULTS: Nestin+/CD31+ cells and pericytes constitute the major part of microvessels in the HPVN, and the high ratio of nestin+/CD31+ cells rather than pericytes are responsible for the poor prognosis of GBM. A more real HPVN was simulated by a hypoxic coculture system in vitro, which consisted of 3D microfluidic chips and a hypoxic chamber. Nestin+/CD31+ cells in the HPVN were derived from GSLC transdifferentiation and promoted GSLC chemoresistance by providing more JAG1 and DLL4 to induce downstream Hes1 overexpression. Poor GBM prognosis correlated with Hes1 expression of tumor cells in the GBM HPVN, and not with total Hes1 expression in GBM tissues. CONCLUSIONS: These results highlight the critical role of nestin+/CD31+ cells in HPVNs that acts in GBM chemoresistance and reveal the distinctive prognostic value of these molecular markers in HPVNs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Hipóxia , Proteína Jagged-1 , Nestina/genética
13.
Hum Pathol ; 46(1): 120-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25455996

RESUMO

There are limited researches focusing on microvascular patterns (MVPs) in human glioblastoma and their prognostic impact. We evaluated MVPs of 78 glioblastomas by CD34/periodic acid-Schiff dual staining and by cluster analysis of the percentage of microvascular area for distinct microvascular formations. The distribution of 5 types of basic microvascular formations, that is, microvascular sprouting (MS), vascular cluster (VC), vascular garland (VG), glomeruloid vascular proliferation (GVP), and vasculogenic mimicry (VM), was variable. Accordingly, cluster analysis classified MVPs into 2 types: type I MVP displayed prominent MSs and VCs, whereas type II MVP had numerous VGs, GVPs, and VMs. By analyzing the proportion of microvascular area for each type of formation, we determined that glioblastomas with few MSs and VCs had many GVPs and VMs, and vice versa. VG seemed to be a transitional type of formation. In case of type I MVP, expression of Ki-67 and p53 but not MGMT was significantly higher as compared with those of type II MVP (P < .05). Survival analysis showed that the type of MVPs presented as an independent prognostic factor of progression-free survival (PFS) and overall survival (OS) (both P < .001). Type II MVP had a more negative influence on PFS and OS than did type I MVP. We conclude that the heterogeneous MVPs in glioblastoma can be categorized properly by certain histopathologic and statistical analyses and may influence clinical outcome.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Análise por Conglomerados , Glioblastoma/irrigação sanguínea , Interpretação de Imagem Assistida por Computador , Microvasos/patologia , Neovascularização Patológica , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD34/análise , Biópsia , Neoplasias Encefálicas/química , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Progressão da Doença , Intervalo Livre de Doença , Feminino , Glioblastoma/química , Glioblastoma/classificação , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Antígeno Ki-67/análise , Masculino , Microvasos/química , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Fatores de Risco , Fatores de Tempo , Proteína Supressora de Tumor p53/análise , Adulto Jovem
14.
Int J Clin Exp Pathol ; 7(6): 3141-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25031733

RESUMO

Besides STAT3 tyrosine 705 phosphorylation (pTyr705-STAT3), phosphorylation of STAT3 at serine 727 (pSer727-STAT3) is shown to contribute to tumorigenesis and be closely related with resistance to radiotherapy and chemotherapy in glioma, but there is currently no study regarding its relevance to prognosis in glioblastoma (GBM). Here, the expression of phosphorylated STAT3 was detected in tumor specimens from 88 patients with newly diagnosed GBM by immunohistochemistry, the Kaplan-Meier survival curve and COX proportional hazards regression model were applied to estimate its influences on progression-free survival (PFS) and overall survival (OS). Immunohistochemical assay showed elevated expression of pSer727-STAT3 in GBM compared with normal brain tissue. Univariate analysis indicated significant correlations of high percentage of pSer727-STAT3 positive tumor cells with shorter PFS (P = 0.006) and OS (P = 0.002). In multivariate analysis, high pSer727-STAT3 expression was demonstrated as an independent unfavorable prognostic indicator for PFS (HR 1.830, P = 0.022) and OS (HR 1.797, P = 0.040). And patients with high expression of both pTyr705-STAT3 and pSer727-STAT3 had a poorer prognosis compared with the remainder (P < 0.005). In conclusion, the high proportion of pSer727-STAT3 positive neoplastic cells in GBM is an independent unfavorable prognostic factor, and increased expression of both pTyr705-STAT3 and pSer727-STAT3 is predictive of poorer clinical outcome, thereby adding to the growing evidence that STAT3 inhibition may be a potential therapeutic strategy in glioblastoma.


Assuntos
Biomarcadores Tumorais/análise , Glioblastoma/patologia , Fator de Transcrição STAT3/metabolismo , Neoplasias Supratentoriais/patologia , Adulto , Idoso , Intervalo Livre de Doença , Feminino , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Fosforilação , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Serina/metabolismo , Neoplasias Supratentoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa