Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(35): 39808-39818, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36005548

RESUMO

The ability to effectively detect bacterial infection in human tissues is important for the timely treatment of the infection. However, traditional techniques fail to visualize bacterial species adhered to host cells in situ in a target-specific manner. Dihydropteroate synthase (DHPS) exclusively exists in bacterial species and metabolically converts p-aminobenzoic acid (PABA) to folic acid (FA). By targeting this bacterium-specific metabolism, we have developed a fluorescent imaging probe, PABA-DCM, based on the conjugation of PABA with a long-wavelength fluorophore, dicyanomethylene 4H-pyran (DCM). We confirmed that the probe can be used in the synthetic pathway of a broad spectrum of Gram-positive and negative bacteria, resulting in a significantly extended retention time in bacterial over mammalian cells. We validated that DHPS catalytically introduces a dihydropteridine group to the amino end of the PABA motif of PABA-DCM, and the resulting adduct leads to an increase in the FA levels of bacteria. We also constructed a hydrogel dressing containing PABA-DCM and graphene oxide (GO), termed PABA-DCM@GO, that achieves target-specific fluorescence visualization of bacterial infection on the wounded tissues of mice. Our research paves the way for the development of fluorescent imaging agents that target species-conserved metabolic pathways of microorganisms for the in situ monitoring of infections in human tissues.


Assuntos
Ácido 4-Aminobenzoico , Infecções Bacterianas , Ácido 4-Aminobenzoico/metabolismo , Animais , Infecções Bacterianas/diagnóstico por imagem , Di-Hidropteroato Sintase/metabolismo , Ácido Fólico/metabolismo , Humanos , Mamíferos/metabolismo , Camundongos
2.
Front Pharmacol ; 11: 615505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519480

RESUMO

Background: Inhibiting proliferation and inducing apoptosis of myofibroblasts is becoming one of the promising and effective ways to treat hypertrophic scar. ABT-263, as an orally bioavailable BCL-2 family inhibitor, has showed great antitumor characteristics by targeting tumor cell apoptosis. The objective of this study was to explore whether ABT-263 could target apoptosis of overactivated myofibroblasts in hypertrophic scar. Methods: In vivo, we used ABT-263 to treat scars in a rabbit ear scar model. Photographs and ultrasound examination were taken weekly, and scars were harvested on day 42 for further Masson trichrome staining. In vitro, the expression levels of BCL-2 family members, including prosurvival proteins, activators, and effectors, were detected systematically in hypertrophic scar tissues and adjacent normal skin tissues, as well as in human hypertrophic scar fibroblasts (HSFs) and human normal dermal fibroblasts (HFBs). The roles of ABT-263 in apoptosis and proliferation of HSFs and HFBs were determined by annexin V/PI assay, CCK-8 kit, and cell cycle analysis. Mitochondrial membrane potential was evaluated by JC-1 staining and the expression of type I/III collagen and α-SMA was measured by PCR, western blotting, and immunofluorescence staining. Furthermore, immunoprecipitation was performed to explore the potential mechanism. Results: In vivo, ABT-263 could significantly improve the scar appearance and collagen arrangement, decrease scar elevation index (SEI), and induce cell apoptosis. In vitro, the expression levels of BCL-2, BCL-XL, and BIM were significantly higher in scar tissues and HSFs than those in normal skin tissues and HFBs. ABT-263 selectively induced HSFs apoptosis by releasing BIM from binding with prosurvival proteins. Moreover, ABT-263 inhibited HSFs proliferation and reduced the expression of α-SMA and type I/III collagen in a concentration- and time- dependent manner. Conclusion: HSFs showed increased mitochondrial priming with higher level of proapoptotic activator BIM and were primed to death. ABT-263 showed great therapeutic ability in the treatment of hypertrophic scar by targeting HSFs.

3.
Burns Trauma ; 8: tkaa020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923490

RESUMO

BACKGROUND: Diabetic wounds are one of the most common and serious complications of diabetes mellitus, characterized by the dysfunction of wound-healing-related cells in quantity and quality. Our previous studies revealed that human amniotic epithelial cells (hAECs) could promote diabetic wound healing by paracrine action. Interestingly, numerous studies demonstrated that exosomes derived from stem cells are the critical paracrine vehicles for stem cell therapy. However, whether exosomes derived from hAECs (hAECs-Exos) mediate the effects of hAECs on diabetic wound healing remains unclear. This study aimed to investigate the biological effects of hAECs-Exos on diabetic wound healing and preliminarily elucidate the underlying mechanism. METHODS: hAECs-Exos were isolated by ultracentrifugation and identified by transmission electron microscopy, dynamic light scattering and flow cytometry. A series of in vitro functional analyses were performed to assess the regulatory effects of hAECs-Exos on human fibroblasts (HFBs) and human umbilical vein endothelial cells (HUVECs) in a high-glycemic microenvironment. High-throughput sequencing and bioinformatics analyses were conducted to speculate the related mechanisms of actions of hAECs-Exos on HFBs and HUVECs. Subsequently, the role of the candidate signaling pathway of hAECs-Exos in regulating the function of HUVECs and HFBs, as well as in diabetic wound healing, was assessed. RESULTS: hAECs-Exos presented a cup- or sphere-shaped morphology with a mean diameter of 105.89 ± 10.36 nm, were positive for CD63 and TSG101 and could be internalized by HFBs and HUVECs. After that, hAECs-Exos not only significantly promoted the proliferation and migration of HFBs, but also facilitated the angiogenic activity of HUVECs in vitro. High-throughput sequencing revealed enriched miRNAs of hAECs-Exos involved in wound healing. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses have shown that the target genes of the top 15 miRNAs were highly enriched in the PI3K-AKT pathway. Further functional studies demonstrated that the PI3K-AKT-mTOR pathway was necessary for the induced biological effects of hAECs-Exos on HFBs and HUVECs, as well as on wound healing, in diabetic mice. CONCLUSIONS: Our findings demonstrated that hAECs-Exos represent a promising, novel strategy for diabetic wound healing by promoting angiogenesis and fibroblast function via activation of the PI3K-AKT-mTOR pathway.

4.
Int J Nanomedicine ; 14: 5989-6000, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534333

RESUMO

BACKGROUND: Less apoptosis and excessive growth of fibroblasts contribute to the progression of hypertrophic scar formation. Cuprous oxide nanoparticles (CONPs) could have not only inhibited tumor by inducing apoptosis and inhibiting proliferation of tumor cells, but also promoted wound healing. The objective of this study was to further explore the therapeutic effects of CONPs on hypertrophic scar formation in vivo and in vitro. METHODS: In vivo, a rabbit ear scar model was established on New Zealand albino rabbits. Six full-thickness and circular wounds (10 mm diameter) were made to each ear. Following complete re-epithelization observed on postoperative day 14, an intralesional injection of CONPs or 5% glucose solution was conducted to the wounds. The photo and ultrasonography of each wound were taken every week and scars were harvested on day 35 for further histomorphometric analysis. In vitro, the role of CONPs in human hypertrophic scar fibroblasts (HSFs) apoptosis and proliferation were evaluated by Tunnel assay, Annexin V/PI staining, cell cycle analysis, and EdU proliferation assay. The endocytosis of CONPs by fibroblasts were detected through transmission electron microscopy (TEM) and the mitochondrial membrane potential and ROS production were also detected. RESULTS: In vivo, intralesional injections of CONPs could significantly improve the scar appearance and collagen arrangement, and decreased scar elevation index (SEI). In vitro, CONPs could prominently inhibit proliferation and induce apoptosis in HSFs in a concentration-dependent manner. In addition, CONPs could be endocytosed into mitochondria,damage the mitochondrial membrane potential and increase ROS production. CONCLUSION: CONPs possessed the therapeutic potential in the treatment of hypertrophic scar by inhibiting HSFs proliferation and inducing HSFs apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/terapia , Cobre/farmacologia , Fibroblastos/patologia , Nanopartículas/uso terapêutico , Animais , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicatriz Hipertrófica/diagnóstico por imagem , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Nanopartículas/ultraestrutura , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa