Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 276: 126233, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38739954

RESUMO

This study was designed to develop a rapid and sensitive method for quantifying legacy and emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples with solid-phase microextraction (SPME) coupled with mass spectrometry (MS). An innovative SPME probe was fabricated via in situ polymerization, and the probe coating was optimized with response surface methodology to maximize the fluorine-fluorine interactions and electrostatic properties and ensure high selectivity for the target PFASs with enrichment factors of 48-491. The coupled SPME and MS provided a rapid and sensitive method for analyses of PFASs, with excellent linearity (r ≥ 0.9962) over the concentration range 0.001-1 µg/L and remarkably low detection limits of 0.1-13.0 ng/L. This method was used to analyze trace PFASs in tap water, river water, and wastewater samples and proved to be a simple and efficient analytical method for selective enrichment and detection of contaminants in the environment.

2.
J Hazard Mater ; 472: 134485, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701725

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant (POP) that can induce DNA damage within cells. Although oxidative stress is one of the primary mechanisms causing DNA damage, its role in the process of TCDD-induced DNA damage remains unclear. In this study, the TCDD-induced production of reactive oxygen species (ROS) and the occurrence of DNA damage at the AP site were monitored simultaneously. Further investigation revealed that TCDD impaired the activities of superoxide dismutase (SOD) and catalase (CAT), compromising the cellular antioxidant defense system. Consequently, this led to an increase in the production of O2.- and NO, thus inducing DNA damage at the AP site under oxidative stress. Our findings were further substantiated by the upregulation of key genes in the base excision repair (BER) pathway and the absence of DNA AP site damage after inhibiting O2.- and NO. In addition, transcriptome sequencing revealed that TCDD induces DNA damage by upregulating genes associated with oxidative stress in the mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), and breast cancer pathways. This study provides important insights into the toxicity mechanisms of TCDD.


Assuntos
Dano ao DNA , Estresse Oxidativo , Dibenzodioxinas Policloradas , Espécies Reativas de Oxigênio , Dibenzodioxinas Policloradas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Reparo do DNA/efeitos dos fármacos , Humanos , Poluentes Ambientais/toxicidade
3.
J Food Biochem ; 46(1): e14023, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873736

RESUMO

In this study, two kinds of polysaccharides from leaves of Dendrobium officinale, namely DLP-1 and DLP-2, were obtained by hot water extraction, ethanol sedimentation, and chromatographic separation using DEAE-52 cellulose and Sephadex G-100 columns. They were composed of different monosaccharides and the content of monosaccharides varied significantly while DLP-1 (Mw 1.38 × 106  Da) was mainly composed of mannose (71.69%) and glucose (22.89%), and DLP-2 (Mw 1.93 × 106  Da) was constituted by rhamnose (35.05%), arabinose (24.12%), and galactose (25.65%). A triple-helical conformation was exhibited by both of them. The scanning electron microscope image of DLP-1 showed an irregular and large lamellar shape, as well as a smooth surface and a porous interior, illustrating they had an amorphous structure. In contrast, DLP-2 revealed a rough, loose, and uneven surface consisting of large sponge-like particles. Nuclear magnetic resonance analysis showed that (1→4)-ß-D-Manp, (1→4)-ß-D-Glcp, and (1→4)-2-O-acetyl-ß-D-Manp were the main linkage types of DLP-1, whereas DLP-2 was constituted by a large amount of (1→4)-ß-D-Manp, (1→4)-ß-D-Glcp, and other residues. Besides, DLP-1 and DLP-2 stimulated the proliferation and phagocytic capacities of RAW 264.7 cells and improved the production of nitric oxide, interleukin-6, TNF-α, and IL-1ß. These results proved that both DLP-1 and DLP-2 possessed excellent immunoregulatory bioactivities and could be functional food or adjuvant drug. PRACTICAL APPLICATIONS: The leaf of Dendrobium officinale is a by-product with huge biomass. The lack of systematic research on its chemical composition and pharmacologic effect, leading to a great waste of resources. In order to maximize the value of D. officinale, this study aimed to investigate the structural characteristics and immunologic effects of two polysaccharide fractions (DLP-1 and DLP-2) from D. officinale leaves, showing that DLP-1 and DLP-2 in D. officinale leaves could be used as anti-inflammatory agents to avoid wasting.


Assuntos
Dendrobium , Antioxidantes/química , Dendrobium/química , Extratos Vegetais/química , Folhas de Planta/química , Polissacarídeos/química
4.
Food Res Int ; 150(Pt B): 110808, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34863499

RESUMO

A large number of Chinese medical books present that Semen Sojae Praeparatum, a fermented food, possesses antidepressant effect, but the mechanism of this antidepressant effect remains largely unknown. This study aimed to explore the effect of Semen Sojae Praeparatum on rats with chronic unpredictable mild stress (CUMS)-induced depression. The results showed that Semen Sojae Praeparatum improved depression-like behaviors (negative preference of sugar water and increased swimming immobility time and time spent in the dark zone) and effectively reduced cell morphological changes in the dentate gyrus of the hippocampus in CUMS rats. In addition, Semen Sojae Praeparatum significantly promoted the contents of norepinephrine (NE), 5-hydroxytryptamine (5-HT), brain-derived neurotrophic factor (BDNF), and gamma-aminobutyric acid (GABA) in the hippocampus and the content of BDNF in the serum (p < 0.05). 16S rRNA sequencing analysis results showed that Semen Sojae Praeparatum increased the abundance of genus Ruminococcaceae_UCG-008 and decreased those of genera Lactobacillus and Bacteroides. Genus Ruminococcaceae_UCG-008 was positively correlated with GABA and BDNF levels in the hippocampus; genus Lactobacillus had a positive correlation with 5-HT; and genus Bacteroides had negative correlations with 5-HT, BDNF, and NE. In addition, Semen Sojae Praeparatum considerably decreased the concentration of short-chain fatty acids (SCFAs). These results indicated that Semen Sojae Praeparatum fermented by Rhizopus chinensis 12 and Bacillus sp. DU-106 alleviated the neurotransmitter levels and structural changes in the neuronal morphology of the hippocampus associated with the modulation of gut microbiota and SCFAs. Therefore, this study confirmed that Semen Sojae Praeparatum could alter depression and provide a theoretical basis for the investigation of the relationship between the microbiota-gut-brain axis and antidepressant.


Assuntos
Microbioma Gastrointestinal , Sêmen , Animais , Eixo Encéfalo-Intestino , Depressão , RNA Ribossômico 16S/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa