RESUMO
KEY MESSAGE: The Mcgy1 locus responsible for gynoecy was fine-mapped into a 296.94-kb region, in which four single-nucleotide variations and six genes adjacent to them might be associate with sex differentiation in bitter gourd. Gynoecy plays an important role in high-efficiency hybrid seed production, and gynoecious plants are excellent materials for dissecting sex differentiation in Cucurbitaceae crop species, including bitter gourd. However, the gene responsible for gynoecy in bitter gourd is unknown. Here, we first identified a gynoecy locus designated Mcgy1 using the F2 population (n = 291) crossed from the gynoecious line S156G and the monoecious line K8-201 via bulked segregant analysis with whole-genome resequencing (BSA-seq) and molecular marker linkage analysis. Then, a large S156G × K8-201 F2 population (n = 5,656) was used for fine-mapping to delimit the Mcgy1 locus into a 296.94-kb physical region on pseudochromosome MC01, where included 33 annotated genes different from any homologous gynoecy genes previously reported in Cucurbitaceae species. Within this region, four underlying single-nucleotide variations (SNVs) that might cause gynoecy were identified by multiple genomic sequence variation analysis, and their six neighbouring genes were considered as potential candidate genes for Mcgy1. Of these, only MC01g1681 showed a significant differential expression at two-leaf developmental stage between S156G and its monoecious near-isogenic line S156 based on RNA sequencing (RNA-seq) and qRT-PCR analyses. In addition, transcriptome analysis revealed 21 key differentially expressed genes (DEGs) and possible regulatory pathways of the formation of gynoecy in bitter gourd. Our findings provide a new clue for researching on gynoecious plants in Cucurbitaceae species and a theoretical basis for breeding gynoecious bitter gourd lines by the use of molecular markers-assisted selection.
Assuntos
Cucurbitaceae , Momordica charantia , Momordica charantia/genética , Melhoramento Vegetal , Cucurbitaceae/genética , Nucleotídeos , Estudos de Associação GenéticaRESUMO
In Cucurbitaceae crops, the first flower node (FFN) is an important agronomic trait which can impact the onset of maturity, the production of female flowers, and yield. However, the gene responsible for regulating FFN in bitter gourd is unknown. Here, we used a gynoecious line (S156G) with low FFN as the female parent and a monoecious line (K8-201) with high FFN as the male parent to obtain F1 and F2 generations. Genetic analysis indicated that the low FFN trait was incompletely dominant over the high FFN trait. A major quantitative trait locus (QTL)-Mcffn and four minor effect QTLs-Mcffn1.1, Mcffn1.2, Mcffn1.3, and Mcffn1.4 were detected by whole-genome re-sequencing-based QTL mapping in the S156G×K8-201 F2 population (n=234) cultivated in autumn 2019. The Mcffn locus was further supported by molecular marker-based QTL mapping in three S156G×K8-201 F2 populations planted in autumn 2019 (n=234), autumn 2020 (n=192), and spring 2022 (n=205). Then, the Mcffn locus was fine-mapped into a 77.98-kb physical region on pseudochromosome MC06 using a large S156G×K8-201 F2 population (n=2,402). MC06g1112, which is a homolog of FLOWERING LOCUS T (FT), was considered as the most likely Mcffn candidate gene according to both expression and sequence variation analyses between parental lines. A point mutation (C277T) in MC06g1112, which results in a P93S amino acid mutation between parental lines, may be responsible for decreasing FFN in bitter gourd. Our findings provide a helpful resource for the molecular marker-assisted selective breeding of bitter gourd.