Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(24): 7601-7620, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792060

RESUMO

Blood biochemical indicators play a crucial role in assessing an individual's overall health status and metabolic function. In this study, we measured five blood biochemical indicators, including total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-CH), triglycerides (TG), high-density lipoprotein cholesterol (HDL-CH), and blood glucose (BG), as well as 19 growth traits of 206 male chickens. By integrating host whole-genome information and 16S rRNA sequencing of the duodenum, jejunum, ileum, cecum, and feces microbiota, we assessed the contributions of host genetics and gut microbiota to blood biochemical indicators and their interrelationships. Our results demonstrated significant negative phenotypic and genetic correlations (r = - 0.20 ~ - 0.67) between CHOL and LDL-CH with growth traits such as body weight, abdominal fat content, muscle content, and shin circumference. The results of heritability and microbiability indicated that blood biochemical indicators were jointly regulated by host genetics and gut microbiota. Notably, the heritability of HDL-CH was estimated to be 0.24, while the jejunal microbiability for BG and TG reached 0.45 and 0.23. Furthermore, by conducting genome-wide association study (GWAS) with the single-nucleotide polymorphism (SNPs), insertion/deletion (indels), and structural variation (SV), we identified RAP2C, member of the RAS oncogene family (RAP2C), dedicator of cytokinesis 11 (DOCK11), neurotensin (NTS) and BOP1 ribosomal biogenesis factor (BOP1) as regulators of HDL-CH, and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5), dihydrodiol dehydrogenase (DHDH), and potassium voltage-gated channel interacting protein 1 (KCNIP1) as candidate genes of BG. Moreover, our findings suggest that cecal RF39 and Clostridia_UCG_014 may be linked to the regulation of CHOL, and jejunal Streptococcaceae may be involved in the regulation of TG. Additionally, microbial GWAS results indicated that the presence of gut microbiota was under host genetic regulation. Our findings provide valuable insights into the complex interaction between host genetics and microbiota in shaping the blood biochemical profile of chickens. KEY POINTS: • Multiple candidate genes were identified for the regulation of CHOL, HDL-CH, and BG. • RF39, Clostridia_UCG_014, and Streptococcaceae were implicated in CHOL and TG modulation. • The composition of gut microbiota is influenced by host genetics.


Assuntos
Microbioma Gastrointestinal , Masculino , Animais , Galinhas , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Estudo de Associação Genômica Ampla , Triglicerídeos/metabolismo , Colesterol/metabolismo
2.
Poult Sci ; 103(4): 103458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350384

RESUMO

The industry of egg-type chicken has shown a trend of extending the rearing period, with the goal of breeding chicken breeds capable of producing 500 qualified eggs by 700 d of age. However, the rapid decline in eggshell quality during the late laying period is one of the major challenges. In this study, a total of 3,261 Rhode Island Red chickens were used to measure eggshell quality traits including eggshell strength (ESS), eggshell thickness (EST), eggshell color (ESC) and eggshell gloss (ESG) at seven age points ranging from 36 to 90 wk of age. Phenotypic variations increased with the aging process, especially during the late laying period (> 55 wk), and the heritability during this period decreased by 22.7 to 81.4% compared to the initial and peak laying periods. Then we performed genome-wide association study (GWAS) to identify the genomic variants that associated with eggshell quality, with a custom Illumina 50K BeadChip, named PhenoixChip-I. The results indicated that 2 genomic regions on GGA1(23.24-25.15Mb; 175.95-176.05 Mb) were significantly (P < 4.48E-06) or suggestively (P < 8.97E-05) associated with ESS, which can explain 9.59% and 0.48% of the phenotypic variations of ESS46 and ESS36, respectively. Three genes, FRY, PCNX2, and ENSGALG00000052468, were considered to be the candidate genes for ESS. For other traits, the genome-wide suggestive SNPs were identified at each age point, exhibiting a certain trend with aging process. Additionally, SNP enrichment analysis and functional annotation of cross-tissue regulatory elements to ESS36 revealed a high concentration of enhancer elements specific to shell gland and kidney tissues. This study, deepened our knowledge of eggshells and laying a valued scientific foundation for chicken molecular breeding.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Estudo de Associação Genômica Ampla/veterinária , Galinhas/genética , Casca de Ovo , Óvulo , Fenótipo
3.
Poult Sci ; 102(5): 102600, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913754

RESUMO

Follicle selection is an important step in the laying process of chicken, which is closely related to the laying performance and fecundity of hens. Follicle selection mainly depends on the regulation of follicle-stimulating hormone (FSH) secreted by pituitary gland and the expression of follicle stimulation hormone receptor. To uncover the role of FSH in chicken follicle selection, in this study, we analyzed the changes in the mRNA transcriptome profiles of FSH-treated chicken granulosa cells from prehierarchical follicles by long-read sequencing Oxford Nanopore Technologies (ONT) approach. Among the 10,764 genes detected, 31 differentially expressed (DE) transcripts of 28 DE genes were significantly upregulated by FSH treatment. These DE transcripts (DETs) were mainly related to the steroid biosynthetic process by GO analysis and enriched in pathways of ovarian steroidogenesis and aldosterone synthesis and secretion by KEGG analysis. Among these genes, the mRNA and protein expression of TNF receptor associated factor 7 (TRAF7) was upregulated after FSH treatment. Further study revealed that TRAF7 stimulated the mRNA expression of steroidogenic enzymes steroidogenic acute regulatory protein (StAR) and cytochrome P450 family 11 subfamily A member 1 (CYP11A1) genes and the proliferation of granulosa cells. This is the first study to investigate differences in chicken prehierarchical follicular granulosa cells before and after FSH treatment by using ONT transcriptome sequencing, which provides a reference for a more comprehensive understanding of the molecular mechanism of follicle selection in chicken.


Assuntos
Galinhas , Hormônio Foliculoestimulante , Feminino , Animais , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Galinhas/fisiologia , RNA Mensageiro/metabolismo , Células da Granulosa , Folículo Ovariano/fisiologia
4.
Sci Adv ; 9(18): eade1204, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134160

RESUMO

A comprehensive characterization of regulatory elements in the chicken genome across tissues will have substantial impacts on both fundamental and applied research. Here, we systematically identified and characterized regulatory elements in the chicken genome by integrating 377 genome-wide sequencing datasets from 23 adult tissues. In total, we annotated 1.57 million regulatory elements, representing 15 distinct chromatin states, and predicted about 1.2 million enhancer-gene pairs and 7662 super-enhancers. This functional annotation of the chicken genome should have wide utility on identifying regulatory elements accounting for gene regulation underlying domestication, selection, and complex trait regulation, which we explored. In short, this comprehensive atlas of regulatory elements provides the scientific community with a valuable resource for chicken genetics and genomics.


Assuntos
Galinhas , Sequências Reguladoras de Ácido Nucleico , Animais , Galinhas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Genômica , Cromatina , Genoma , Elementos Facilitadores Genéticos
5.
Genes (Basel) ; 13(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36292659

RESUMO

The signaling pathway of the wingless-type mouse mammary tumor virus integration site (Wnt) plays an important role in ovarian and follicular development. In our previous study, WNT4 was shown to be involved in the selection and development of chicken follicles by upregulating the expression of follicle-stimulating hormone receptors (FSHR), stimulating the proliferation of follicular granulosa cells, and increasing the secretion of steroidal hormones. FSH also stimulates the expression of WNT4. To further explore the molecular mechanism by which FSH upregulates WNT4 and characterize the cis-elements regulating WNT4 transcription, in this study, we determined the critical regulatory regions affecting chicken WNT4 transcription. We then identified a single-nucleotide polymorphism (SNP) in this region, and finally analyzed the associations of the SNP with chicken production traits. The results showed that the 5' regulatory region from −3354 to −2689 of WNT4 had the strongest activity and greatest response to FSH stimulation, and we identified one SNP site in this segment, −3015 (G > C), as affecting the binding of NFAT5 (nuclear factor of activated T cells 5) and respones to FSH stimulation. When G was replaced with C at this site, it eliminated the NFAT5 binding. The mRNA level of WNT4 in small yellow follicles of chickens with genotype GG was significantly higher than that of the other two genotypes. Moreover, this locus was found to be significantly associated with comb length in hens. Individuals with the genotype CC had longer combs. Collectively, these data suggested that SNP−3015 (G > C) is involved in the regulation of WNT4 gene expression by responding FSH and affecting the binding of NFAT5 and that it is associated with chicken comb length. The current results provide a reference for further revealing the response mechanism between WNT and FSH.


Assuntos
Galinhas , Receptores do FSH , Animais , Feminino , Galinhas/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/farmacologia , Polimorfismo de Nucleotídeo Único , Receptores do FSH/genética , Receptores do FSH/metabolismo , RNA Mensageiro , Proteína Wnt4/genética
6.
Front Genet ; 13: 1090603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712880

RESUMO

In chickens, follicle selection is an important process affecting laying traits, which is characterized by the differentiation of granulosa cells and the synthesis of progesterone by granulosa cells from hierarchical follicles. By using Oxford Nanopore Technologies (ONT) approach, we compared the transcriptomes of granulosa cells between pre-hierarchical (Pre-GCs) and hierarchical follicles (Post-GCs) to identify genes underlying chicken follicle selection. A total of 2,436 differentially expressed genes (DEGs), 3,852 differentially expressed transcripts (DETs) and 925 differentially expressed lncRNA transcripts were identified between chicken Pre-GCs and Post-GCs. For all of the significant DETs, the alternative 3'splice sites (A3) accounted for a maximum of 23.74% of all alternative splicing events. Three DETs of the 7-dehydrocholesterol reductase gene (DHCR7) named as T1, T3, and T4, differing in 5'untranslated regions (UTRs), increased in Post-GCs with different folds (T1: 1.83, T3: 2.42, T4: 5.06). The expression of the three DHCR7 transcripts was upregulated by estrogen in a dose-dependent manner, while was downregulated by bone morphogenetic protein 15 (BMP15) and transforming growth factor-beta 1 (TGF-ß1). Follicle-stimulating hormone (FSH) and bone morphogenetic protein 4 (BMP4) promoted the expression of the three DHCR7 transcripts in Pre-GCs at lower concentrations, while repressed their expression at higher concentrations. The data from this study may provide a reference for better understanding of the genetic mechanisms underlying follicle selection in chicken and other poultry species.

7.
Anim Biosci ; 34(8): 1290-1302, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33152230

RESUMO

OBJECTIVE: Follicle selection is an important process in chicken egg laying. Among several small yellow (SY) follicles, the one exhibiting the highest expression of follicle stimulation hormone receptor (FSHR) will be selected to become a hierarchal follicle. The role of lncRNA, miRNA and other non-coding RNA in chicken follicle selection is unclear. METHODS: In this study, the whole transcriptome sequencing of SY follicles with different expression levels of FSHR in Jining Bairi hens was performed, and the expression of 30 randomly selected mRNAs, lncRNAs and miRNAs was validated by quantitative real-time polymerase chain reaction. Preliminary studies and bioinformatics analysis were performed on the selected mRNA, lncRNA, miRNA and their target genes. The effect of identified gene was examined in the granulosa cells of chicken follicles. RESULTS: Integrated transcriptomic analysis on chicken SY follicles differing in FSHR expression revealed 467 differentially expressed mRNA genes, 134 differentially expressed lncRNA genes and 34 differentially expressed miRNA genes, and sosondowah ankyrin repeat domain family member A (SOWAHA) was the common target gene of three miRNAs and one lncRNA. SOWAHA was mainly expressed in small white (SW) and SY follicles and was affected by follicle stimulation hormone (FSH) treatment in the granulosa cells. Knockdown of SOWAHA inhibited the expression of Wnt family member 4 (Wnt4) and steroidogenic acute regulatory protein (StAR) in the granulosa cells of prehierarchal follicles, while stimulated Wnt4 in hierarchal follicles. Overexpression of SOWAHA increased the expression of Wnt4 in the granulosa cells of prehierarchal follicles, decreased that of StAR and cytochrome P450 family 11 subfamily A member 1 in the granulosa cells of hierarchal follicles and inhibited the proliferation of granulosa cells. CONCLUSION: Integrated analysis of chicken SY follicle transcriptomes identified SOWAHA as a network gene that is affected by FSH in granulosa cells of ovarian follicles. SOWAHA affected the expression of genes involved in chicken follicle selection and inhibited the proliferation of granulosa cells, suggesting an inhibitory role in chicken follicle selection.

8.
PLoS One ; 11(9): e0163080, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27658047

RESUMO

The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa