Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Drug Resist Updat ; 77: 101141, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39181011

RESUMO

AIMS: The antifolate methotrexate (MTX) is an anchor drug used in acute lymphoblastic leukemia (ALL) with poorly understood chemoresistance mechanisms in relapse. Herein we find decreased folate polyglutamylation network activities and inactivating FPGS mutations, both of which could induce MTX resistance and folate metabolic vulnerability in relapsed ALL. METHODS: We utilized integrated systems biology analysis of transcriptomic and genomic data from relapse ALL cohorts to infer hidden ALL relapse drivers and related genetic alternations during clonal evolution. The drug sensitivity assay was used to determine the impact of relapse-specific FPGS mutations on sensitivity to different antifolates and chemotherapeutics in ALL cells. We used liquid chromatography-mass spectrometry (LC-MS) to quantify MTX and folate polyglutamate levels in folylpoly-γ-glutamate synthetase (FPGS) mutant ALL cells. Enzymatic activity and protein degradation assays were also conducted to characterize the catalytic properties and protein stabilities of FPGS mutants. An ALL cell line-derived mouse leukemia xenograft model was used to evaluate the in vivo impact of FPGS inactivation on leukemogenesis and sensitivity to the polyglutamatable antifolate MTX as well as non-polyglutamatble lipophilic antifolate trimetrexate (TMQ). RESULTS: We found a significant decrease in folate polyglutamylation network activities during ALL relapse using RNA-seq data. Supported by functional evidence, we identified multifactorial mechanisms of FPGS inactivation in relapsed ALL, including its decreased network activity and gene expression, focal gene deletion, impaired catalytic activity, and increased protein degradation. These deleterious FPGS alterations induce MTX resistance and inevitably cause marked intracellular folate shrinkage, which could be efficiently targeted by a polyglutamylation-independent lipophilic antifolate TMQ in vitro and in vivo. CONCLUSIONS: MTX resistance in relapsed ALL relies on FPGS inactivation, which inevitably induces a folate metabolic vulnerability, allowing for an efficacious antifolate ALL treatment strategy that is based upon TMQ, thereby surmounting chemoresistance in relapsed ALL.

2.
Blood ; 135(1): 41-55, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31697823

RESUMO

To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, in which multiple subclones harbor mutations in the same drug resistance gene, was observed in 6 relapses and confirmed by single-cell sequencing in 1 case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently a 2-step process in which a persistent clone survived initial therapy and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from preexisting resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.


Assuntos
Biomarcadores Tumorais/genética , Metotrexato/uso terapêutico , Mutagênese/efeitos dos fármacos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , 5'-Nucleotidase/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Criança , Análise Mutacional de DNA , Feminino , Seguimentos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prognóstico , Receptores de Glucocorticoides/genética , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética
3.
FASEB J ; 33(3): 4525-4537, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30702927

RESUMO

It has been shown that 5-amino-4-imidazolecarboxamide riboside (AICAr) can inhibit cell proliferation and induce apoptosis in childhood acute lymphoblastic leukemia (ALL) cells. Although AICAr could regulate cellular energy metabolism by activating AMPK, the cytotoxic mechanisms of AICAr are still unclear. Here, we knocked out TP53 or PRKAA1 gene (encoding AMPKα1) in NALM-6 and Reh cells by using the clustered regularly interspaced short palindromic repeats/Cas9 system and found that AICAr-induced proliferation inhibition was independent of AMPK activation but dependent on p53. Liquid chromatography-mass spectrometry analysis of nucleotide metabolites indicated that AICAr caused an increase in adenosine triphosphate, deoxyadenosine triphosphate, and deoxyguanosine triphosphate levels by up-regulating purine biosynthesis, while AICAr led to a decrease in cytidine triphosphate, uridine triphosphate, deoxycytidine triphosphate, and deoxythymidine triphosphate levels because of reduced phosphoribosyl pyrophosphate production, which consequently impaired the pyrimidine biosynthesis. Ribonucleoside triphosphate (NTP) pool imbalances suppressed the rRNA transcription efficiency. Furthermore, deoxy-ribonucleoside triphosphate (dNTP) pool imbalances induced DNA replication stress and DNA double-strand breaks, followed by cell cycle arrest and apoptosis in ALL cells. Exogenous uridine could rebalance the NTP and dNTP pools by supplementing pyrimidine and then attenuate AICAr-induced cytotoxicity. Our data indicate that RNA transcription inhibition and DNA replication stress induced by NTP and dNTP pool imbalances might play a key role in AICAr-mediated cytotoxic effects on ALL cells, suggesting a potential clinical application of AICAr in future ALL therapy.-Du, L., Yang, F., Fang, H., Sun, H., Chen, Y., Xu, Y., Li, H., Zheng, L., Zhou, B.-B. S. AICAr suppresses cell proliferation by inducing NTP and dNTP pool imbalances in acute lymphoblastic leukemia cells.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Nucleotídeos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/fisiologia , Aminoimidazol Carboxamida/antagonistas & inibidores , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/toxicidade , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Desoxirribonucleotídeos/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Inativação de Genes , Genes p53 , Genes de RNAr , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA Ribossômico/biossíntese , Ribonucleotídeos/antagonistas & inibidores , Ribonucleotídeos/metabolismo , Ribonucleotídeos/toxicidade , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/fisiologia , Uridina/farmacologia
4.
Med Sci Monit ; 26: e923411, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32266878

RESUMO

BACKGROUND Acute lymphocytic leukemia (ALL) is a common blood cancer which induces high mortality in children. Bromodomains and extra-terminal (BET) protein inhibitors, such as JQ1 and ARV-825, are promising cancer therapeutic agents that can be used by targeting c-Myc. A recent work reported that JQ1 effectively attenuates ALL in vitro by suppressing cell proliferation and accelerating apoptosis. The purpose of this research was to probe into the potential mechanism of how JQ1 inhibits ALL cell proliferation in vitro. MATERIAL AND METHODS Cell viability of ALL cells were measured by CTG after treatment by JQ1. Cell cycle analysis was done by EdU and PI staining. Cell apoptosis was assessed by Annexin V/PI staining. Glycolysis was detected using Seahorse and LC-MS kits. The expression of glycolytic rate-limiting enzymes was assessed by RNA-seq, qRT-PCR, and Western blot. RESULTS JQ1 suppressed cell proliferation by arresting the cell cycle and inducing the apoptosis of acute lymphocytic leukemia cells. JQ1 inhibited cell proliferation of B-ALL cells by restraining glycolysis. Conversely, the cell cycle block of B-ALL cells induced by JQ1 was partially abolished after pretreatment with 2-Deoxy-D-glucose (2-DG), an inhibitor of glycolysis. Furthermore, JQ1 restrained the glycolysis of B-ALL cell lines by remarkably downregulating the rate-limiting enzymes of glycolysis, such as hexokinase 2, phosphofructokinase, and lactate dehydrogenase A. Moreover, the cell cycle arrest was reversed in B-ALL cells with overexpressed c-Myc treated by JQ1, which is involved in the enhancement of glycolysis. CONCLUSIONS The BET inhibitor JQ1 suppresses the proliferation of ALL by inhibiting c-Myc-mediated glycolysis, thus providing a new strategy for the treatment of ALL.


Assuntos
Azepinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Triazóis/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo
5.
J Cell Mol Med ; 22(12): 6202-6212, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30255549

RESUMO

Relapse-specific mutations in phosphoribosyl pyrophosphate synthetase 1 (PRPS1), a rate-limiting purine biosynthesis enzyme, confer significant drug resistances to combination chemotherapy in acute lymphoblastic leukemia (ALL). It is of particular interest to identify drugs to overcome these resistances. In this study, we found that PRPS1 mutant ALL cells specifically showed more chemosensitivity to 5-Fluorouracil (5-FU) than control cells, attributed to increased apoptosis of PRPS1 mutant cells by 5-FU. Mechanistically, PRPS1 mutants increase the level of intracellular phosphoribosyl pyrophosphate (PRPP), which causes the apt conversion of 5-FU to FUMP and FUTP in Reh cells, to promote 5-FU-induced DNA damage and apoptosis. Our study not only provides mechanistic rationale for re-targeting drug resistant cells in ALL, but also implicates that ALL patients who harbor relapse-specific mutations of PRPS1 might benefit from 5-FU-based chemotherapy in clinical settings.


Assuntos
Fluoruracila/farmacologia , Fosforribosil Pirofosfato/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ribose-Fosfato Pirofosfoquinase/genética , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Células Jurkat , Lentivirus/genética , Camundongos , Fosforribosil Pirofosfato/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
7.
Cancer Cell ; 10(1): 39-50, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16843264

RESUMO

We describe here the existence of a heregulin-HER3 autocrine loop, and the contribution of heregulin-dependent, HER2-mediated HER3 activation to gefitinib insensitivity in non-small cell lung cancer (NSCLC). ADAM17 protein, a major ErbB ligand sheddase, is upregulated in NSCLC and is required not only for heregulin-dependent HER3 signaling, but also for EGFR ligand-dependent signaling in NSCLC cell lines. A selective ADAM inhibitor, INCB3619, prevents the processing and activation of multiple ErbB ligands, including heregulin. In addition, INCB3619 inhibits gefitinib-resistant HER3 signaling and enhances gefitinib inhibition of EGFR signaling in NSCLC. These results show that ADAM inhibition affects multiple ErbB pathways in NSCLC and thus offers an excellent opportunity for pharmacological intervention, either alone or in combination with other drugs.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/metabolismo , Piperidinas/farmacologia , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Feminino , Gefitinibe , Expressão Gênica/genética , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Paclitaxel/farmacologia , Piperidinas/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Compostos de Espiro/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Front Pharmacol ; 14: 1331687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259297

RESUMO

Acute lymphoblastic leukemia (ALL) is a prevalent hematologic malignancy in children, and methotrexate (MTX) is a widely employed curative treatment. Despite its common use, clinical resistance to MTX is frequently encountered. In this study, an MTX-resistant cell line (Reh-MTXR) was established through a stepwise selection process from the ALL cell line Reh. Comparative analysis revealed that Reh-MTXR cells exhibited resistance to MTX in contrast to the parental Reh cells. RNA-seq analysis identified an upregulation of ATP-binding cassette transporter G1 (ABCG1) in Reh-MTXR cells. Knockdown of ABCG1 in Reh-MTXR cells reversed the MTX-resistant phenotype, while overexpression of ABCG1 in Reh cells conferred resistance to MTX. Mechanistically, the heightened expression of ABCG1 accelerated MTX efflux, leading to a reduced accumulation of MTX polyglutamated metabolites. Notably, the ABCG1 inhibitor benzamil effectively sensitized Reh-MTXR cells to MTX treatment. Moreover, the observed upregulation of ABCG1 in Reh-MTXR cells was not induced by alterations in DNA methylation or histone acetylation. This study provides insight into the mechanistic basis of MTX resistance in ALL and also suggests a potential therapeutic approach for MTX-resistant ALL in the future.

9.
Blood Sci ; 5(1): 39-50, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36742181

RESUMO

Tumor relapse is the major cause of treatment failure in childhood acute lymphoblastic leukemia (ALL), yet the underlying mechanisms are still elusive. Here, we demonstrate that phosphoribosyl pyrophosphate synthetase 2 (PRPS2) mutations drive ALL relapse through influencing PRPS1/2 hexamer stability. Ultra-deep sequencing was performed to identify PRPS2 mutations in ALL samples. The effects of PRPS2 mutations on cell survival, cell apoptosis, and drug resistance were evaluated. In vitro PRPS2 enzyme activity and ADP/GDP feedback inhibition of PRPS enzyme activity were assessed. Purine metabolites were analyzed by ultra-performance liquid-chromatography tandem mass spectrometry (UPLC-MS/MS). Integrating sequencing data with clinical information, we identified PRPS2 mutations only in relapsed childhood ALL with thiopurine therapy. Functional PRPS2 mutations mediated purine metabolism specifically on thiopurine treatment by influencing PRPS1/2 hexamer stability, leading to reduced nucleotide feedback inhibition of PRPS activity and enhanced thiopurine resistance. The 3-amino acid V103-G104-E105, the key difference between PRPS1 and PRPS2, insertion in PRPS2 caused severe steric clash to the interface of PRPS hexamer, leading to its low enzyme activity. In addition, we demonstrated that PRPS2 P173R increased thiopurine resistance in xenograft models. Our work describes a novel mechanism by which PRPS2 mutants drive childhood ALL relapse and highlights PRPS2 mutations as biomarkers for relapsed childhood ALL.

10.
Front Med (Lausanne) ; 10: 1210765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425330

RESUMO

Purpose: To investigate the effect and timing of subconjunctival bevacizumab injection on inhibiting corneal neovascularization (CorNV) in patients after chemical burns. Methods: Patients with CorNV secondary to chemical burns were involved. Two subconjunctival injections of bevacizumab (2.5 mg/0.1 mL per involved quadrant) with an interval of 4 weeks were administered, and followed up a year. The area occupied by neovascular vessels (NA), accumulative neovascular length (NL), mean neovascular diameter (ND), best-corrected visual acuity (BCVA) and intraocular pressure (IOP) were evaluated. Complication was also recorded. Results: Eleven patients with CorNV were involved. Eight patients had a history of surgery (four had amniotic grafts, one had keratoplasty, and three had amniotic grafts and keratoplasty). Decreasing in NA, NL, and ND were statistically significant at each time point compared to the baseline (p < 0.01). CorNV that developed within 1 month was considerably regressed, and vessels with fibrovascular membranes were found to be narrower and shorter than pretreatment. BCVA improved in five patients (from one to five lines), remained unchanged in five patients, and decreased in one patient compared to pretreatment. Conclusion: Subconjunctival bevacizumab injection has a particular potential for the regression of CorNV, especially newly formed within 1 month in patients after chemical burns.

11.
Leukemia ; 37(6): 1204-1215, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095208

RESUMO

Mismatch repair (MMR) deficiency has been linked to thiopurine resistance and hypermutation in relapsed acute lymphoblastic leukemia (ALL). However, the repair mechanism of thiopurine-induced DNA damage in the absence of MMR remains unclear. Here, we provide evidence that DNA polymerase ß (POLB) of base excision repair (BER) pathway plays a critical role in the survival and thiopurine resistance of MMR-deficient ALL cells. In these aggressive resistant ALL cells, POLB depletion and its inhibitor oleanolic acid (OA) treatment result in synthetic lethality with MMR deficiency through increased cellular apurinic/apyrimidinic (AP) sites, DNA strand breaks and apoptosis. POLB depletion increases thiopurine sensitivities of resistant cells, and OA synergizes with thiopurine to kill these cells in ALL cell lines, patient-derived xenograft (PDX) cells and xenograft mouse models. Our findings suggest BER and POLB's roles in the process of repairing thiopurine-induced DNA damage in MMR-deficient ALL cells, and implicate their potentials as therapeutic targets against aggressive ALL progression.


Assuntos
DNA Polimerase beta , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Humanos , Camundongos , Dano ao DNA , DNA Polimerase beta/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Mutações Sintéticas Letais , Reparo de Erro de Pareamento de DNA/genética
12.
Cancer Cell ; 3(3): 247-58, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12676583

RESUMO

Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.


Assuntos
Ciclo Celular/fisiologia , Proteínas Quinases/metabolismo , Fosfatases cdc25/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA , Ativação Enzimática , Células HeLa , Humanos , Cinética , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Radiação Ionizante , Fase S/efeitos da radiação , Serina/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor , Fosfatases cdc25/efeitos da radiação
13.
Front Oncol ; 12: 884782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800047

RESUMO

Murine-based CD19 CAR-T (CD19m CAR-T) therapy can lead to a relatively high CR rate when administered to B-ALL patients for the first time. However, the DOR is sub-optimal and a subset of patients even show primary resistance to CD19m CAR-T. To address these issues, we employed a humanized selective CD19CAR-T (CD19hs CAR-T) and evaluated the long-term safety and efficacy of treating 8 R/R B-ALL patients who had relapsed or failed to achieve CR following CD19m CAR-T infusion (Clinical trials' number: ChiCTR1800014761 and ChiCTR1800017439). Of the 8 patients, 7 achieved CR on Day 30 after the 1st infusion of CD19hs CAR-T. The median CRS grade was 1 without significant neurotoxicity seen in any of the 8 patients. The median DOR was 11 months, significantly longer than the DOR following CD19mCAR-T infusions. Anti-CAR antibodies were induced in patients who had received prior CD19m CAR-T infusions but not in those following a single or repeated CD19hsCAR-T treatment, which probably had contributed to the sub-optimal DOR and/or failure of effective response in these patients. CD19hs CAR-T, in contrast, induced low immunogenicity compared with CD19m CAR-T, suggesting that a repeat dosing strategy might be feasible and efficacious for patients who have relapsed and/or show primary resistance to CD19m CAR-T therapy. In this clinical study, CD19hs CAR-T showed a significant clinical efficacy with mild side effect among patients with R/R B-ALL who had previously received CD19m CAR-T. Clinical Trial Registration: https://www.chictr.org.cn/showprojen.aspx?proj=25199 (ChiCTR1800014761). https://www.chictr.org.cn/showproj.aspx?proj=29174 (ChiCTR1800017439).

14.
iScience ; 25(3): 103881, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243242

RESUMO

Mutations in RAS pathway genes are highly prevalent in acute lymphoblastic leukemia (ALL). However, the effects of RAS mutations on ALL cell growth have not been experimentally characterized, and effective RAS-targeting therapies are being sought after. Here, we found that Reh ALL cells bearing the KRAS-G12D mutation showed increased proliferation rates in vitro but displayed severely compromised growth in mice. Exploring this divergence, proliferation assays with multiple ALL cell lines revealed that the KRAS-G12D rewired methionine and arginine metabolism. Isotope tracing results showed that KRAS-G12D promotes catabolism of methionine and arginine to support anabolism of polyamines and proline, respectively. Chemical inhibition of polyamine biosynthesis selectively killed KRAS-G12D B-ALL cells. Finally, chemically inhibiting AKT/mTOR signaling abrogated the altered amino acid metabolism and strongly promoted the in vivo growth of KRAS-G12D cells in B-ALL xenograft. Our study thus illustrates how hyperactivated AKT/mTOR signaling exerts distinct impacts on hematological malignancies vs. solid tumors.

15.
FEBS Lett ; 596(4): 437-448, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040120

RESUMO

A key cofactor of several enzymes implicated in DNA synthesis, repair, and methylation, folate has been shown to be required for normal cell growth and replication and is the basis for cancer chemotherapy using antifolates. γ-Glutamyl hydrolase (GGH) catalyzes the removal of γ-polyglutamate tails of folylpoly-/antifolylpoly-γ-glutamates to facilitate their export out of the cell, thereby maintaining metabolic homeostasis of folates or pharmacological efficacy of antifolates. However, the factors that control or modulate GGH function are not well understood. In this study, we show that intact GGH is not indispensable for the chemosensitivity and growth of acute lymphoblastic leukemia (ALL) cells, whereas GGH lacking N-terminal signal peptide (GGH-ΔN ) confers the significant drug resistance of ALL cells to the antifolates MTX and RTX. In addition, ALL cells harboring GGH-ΔN show high susceptibility to the change in folates, and glycosylation is not responsible for these phenotypes elicited by GGH-ΔN . Mechanistically, the loss of signal peptide enhances intracellular retention of GGH and its lysosomal disposition. Our findings clearly define the in vivo role of GGH in ALL cells and indicate a novel modulation of the GGH function, suggesting new avenues for ALL treatment in future.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Linfócitos/efeitos dos fármacos , Sinais Direcionadores de Proteínas/genética , gama-Glutamil Hidrolase/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Edição de Genes/métodos , Glicosilação , Células HeLa , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Metotrexato/farmacologia , Ácido Poliglutâmico/metabolismo , Quinazolinas/farmacologia , Tiofenos/farmacologia , gama-Glutamil Hidrolase/deficiência
16.
J Pharmacol Exp Ther ; 339(2): 421-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21835932

RESUMO

The mammalian target of rapamycin (mTOR) has proven to be a valid therapeutic target in a number of human cancers, and it is a candidate for clinical trials in human breast cancer. We report on a biomarker-based translational medicine approach to assess the efficacy and mechanism of action for the mTOR inhibitor temsirolimus (CCI-779) in a mammary carcinoma OncoMouse model [polyomavirus middle T antigen (PyMT)]. The mTOR signaling pathway biomarkers were assessed using a reverse-phase protein array. Pharmacokinetics studies were conducted in both the tumor and plasma compartments. Pharmacodynamic biomarkers for compound-target engagement of tumor phospho-S6 proteins were assayed by Western blot. Temsirolimus (intravenously once a week for 2 weeks) was administered in both early and advanced stages of tumors. Biomarkers for temsirolimus effects on tumor progression were assessed by three-dimensional ultrasound imaging in combination with immunohistochemistry to assess vascular density (Texas red-dextran and CD31 immunostaining) and macrophage burden (F4/80 antigen). Tumor growth was significantly arrested in temsirolimus (25 ± 14% from 8 to 10 weeks, p < 0.05, and 26 ± 17% from 11 to 13 weeks, p < 0.01), compared with 493 ± 160 and 376 ± 50% increases, respectively, in vehicle-treated groups. Temsirolimus reduced tumor vascular density, 36 to 48 and 58 to 60%, p < 0.05, by the Texas red-dextran method or CD31-positive vessel count, respectively. Temsirolimus reduced tumor macrophage burden by 46% at 13 weeks (p < 0.05). Temsirolimus inhibited (p < 0.05) the phosphoproteins S6 pS235/236 and S6 pS240/244 up to 81 and 87%, respectively. We conclude that the multimodal biomarkers of temsirolimus efficacy and mechanism of action (phosphoproteins) strongly suggest that it might translate to therapeutic efficacy in human tumors that bear congruency to features present in the mammary carcinoma of PyMT tumors.


Assuntos
Biomarcadores Farmacológicos/análise , Neoplasias Mamárias Experimentais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Carga Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Progressão da Doença , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Infusões Intravenosas , Camundongos , Camundongos Transgênicos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Sirolimo/farmacocinética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/análise , Pesquisa Translacional Biomédica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Cancer ; 2(8): 819-834, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-35122027

RESUMO

Chemotherapy is a standard treatment for pediatric acute lymphoblastic leukemia (ALL), which sometimes relapses with chemoresistant features. However, whether acquired drug-resistance mutations in relapsed ALL pre-exist or are induced by treatment remains unknown. Here we provide direct evidence of a specific mechanism by which chemotherapy induces drug-resistance-associated mutations leading to relapse. Using genomic and functional analysis of relapsed ALL we show that thiopurine treatment in mismatch repair (MMR)-deficient leukemias induces hotspot TP53 R248Q mutations through a specific mutational signature (thio-dMMR). Clonal evolution analysis reveals sequential MMR inactivation followed by TP53 mutation in some patients with ALL. Acquired TP53 R248Q mutations are associated with on-treatment relapse, poor treatment response and resistance to multiple chemotherapeutic agents, which could be reversed by pharmacological p53 reactivation. Our findings indicate that TP53 R248Q in relapsed ALL originates through synergistic mutagenesis from thiopurine treatment and MMR deficiency and suggest strategies to prevent or treat TP53-mutant relapse.


Assuntos
Síndromes Neoplásicas Hereditárias , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Mutagênese , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Doenças da Imunodeficiência Primária , Recidiva , Proteína Supressora de Tumor p53/genética
18.
Dev Cell ; 9(4): 477-88, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16198290

RESUMO

Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ancoragem à Quinase A , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase CDC2/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , Centrossomo/ultraestrutura , Biologia Computacional , Proteínas do Citoesqueleto/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Distribuição Tecidual , Quinase 1 Polo-Like
19.
Cornea ; 39(6): 754-760, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32040009

RESUMO

PURPOSE: To investigate whether subconjunctival bevacizumab help prevent corneal graft neovascularization and prolong the graft survival of patients with chemical burns. METHODS: We performed a prospective nonrandomized comparative case series study. Twenty-six eyes received subconjunctival bevacizumab (10 mg/0.4 mL) once and topical immunosuppressive agents after sclerocorneal lamellar keratoplasty as the treatment, and 13 eyes received a topical immunosuppressant alone and served as the control group. The main outcomes were a cumulative probability of graft survival, development of corneal neovascularization, and complications. RESULTS: The postoperative follow-up time was 14.3 months (range, 2-62 mo). The cumulative graft survival time was significantly longer in the treatment group than that in the control group (42.9 ± 5.9 vs. 4.8 ± 0.7 mo; log rank < 0.001). In the treatment group, 19 of the 26 grafts (73.1%) survived as transparent with a mean follow-up of 18.7 ± 3.0 months. At the end of the follow-up, 4 grafts remained free of neovascularization, 2 developed edema without neovascularization, and 15 remained transparent with a stable ocular surface and some neovascular vessels in the peripheral transplant interface. The other 5 grafts became opaque and neovascularized. In the control group, all grafts became opaque and neovascularized within the follow-up period (5.5 ± 0.7 mo). During the follow-up, a corneal epithelial defect developed in 9 eyes in the treatment group and 7 in the control group. CONCLUSIONS: Early application of subconjunctival bevacizumab after sclerocorneal lamellar keratoplasty can significantly prevent corneal neovascularization and promote graft survival for severe late-stage ocular chemical burns.


Assuntos
Bevacizumab/administração & dosagem , Queimaduras Químicas/terapia , Neovascularização da Córnea/prevenção & controle , Transplante de Córnea/métodos , Queimaduras Oculares/terapia , Esclera/transplante , Administração Tópica , Adolescente , Adulto , Inibidores da Angiogênese/administração & dosagem , Queimaduras Químicas/complicações , Queimaduras Químicas/diagnóstico , Neovascularização da Córnea/diagnóstico , Neovascularização da Córnea/etiologia , Relação Dose-Resposta a Droga , Queimaduras Oculares/complicações , Queimaduras Oculares/diagnóstico , Feminino , Seguimentos , Sobrevivência de Enxerto , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Estudos Retrospectivos , Fatores de Tempo , Tempo para o Tratamento , Índices de Gravidade do Trauma , Resultado do Tratamento , Adulto Jovem
20.
Leukemia ; 33(10): 2365-2378, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30940905

RESUMO

Bone marrow (BM) niche responds to chemotherapy-induced cytokines secreted from acute lymphoblastic leukemia (ALL) cells and protects the residual cells from chemotherapeutics in vivo. However, the underlying molecular mechanisms for the induction of cytokines by chemotherapy remain unknown. Here, we found that chemotherapeutic drugs (e.g., Ara-C, DNR, 6-MP) induced the expression of niche-protecting cytokines (GDF15, CCL3 and CCL4) in both ALL cell lines and primary cells in vitro. The ATM and NF-κB pathways were activated after chemotherapy treatment, and the pharmacological or genetic inhibition of these pathways significantly reversed the cytokine upregulation. Besides, chemotherapy-induced NF-κB activation was dependent on ATM-TRAF6 signaling, and NF-κB transcription factor p65 directly regulated the cytokines expression. Furthermore, we found that both pharmacological and genetic perturbation of ATM and p65 significantly decreased the residual ALL cells after Ara-C treatment in ALL xenograft mouse models. Together, these results demonstrated that ATM-dependent NF-κB activation mediated the cytokines induction by chemotherapy and ALL resistance to chemotherapeutics. Inhibition of ATM-dependent NF-κB pathway can sensitize ALL to chemotherapeutics, providing a new strategy to eradicate residual chemo-resistant ALL cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos , Linhagem Celular Tumoral , Criança , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa