Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2207831120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897972

RESUMO

During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.


Assuntos
Propofol , Humanos , Propofol/farmacologia , Estado de Consciência , Eletroencefalografia , Encéfalo , Tálamo , Inconsciência/induzido quimicamente , Vias Neurais , Córtex Cerebral
2.
Neurocrit Care ; 33(2): 364-375, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32794142

RESUMO

There are currently no therapies proven to promote early recovery of consciousness in patients with severe brain injuries in the intensive care unit (ICU). For patients whose families face time-sensitive, life-or-death decisions, treatments that promote recovery of consciousness are needed to reduce the likelihood of premature withdrawal of life-sustaining therapy, facilitate autonomous self-expression, and increase access to rehabilitative care. Here, we present the Connectome-based Clinical Trial Platform (CCTP), a new paradigm for developing and testing targeted therapies that promote early recovery of consciousness in the ICU. We report the protocol for STIMPACT (Stimulant Therapy Targeted to Individualized Connectivity Maps to Promote ReACTivation of Consciousness), a CCTP-based trial in which intravenous methylphenidate will be used for targeted stimulation of dopaminergic circuits within the subcortical ascending arousal network (ClinicalTrials.gov NCT03814356). The scientific premise of the CCTP and the STIMPACT trial is that personalized brain network mapping in the ICU can identify patients whose connectomes are amenable to neuromodulation. Phase 1 of the STIMPACT trial is an open-label, safety and dose-finding study in 22 patients with disorders of consciousness caused by acute severe traumatic brain injury. Patients in Phase 1 will receive escalating daily doses (0.5-2.0 mg/kg) of intravenous methylphenidate over a 4-day period and will undergo resting-state functional magnetic resonance imaging and electroencephalography to evaluate the drug's pharmacodynamic properties. The primary outcome measure for Phase 1 relates to safety: the number of drug-related adverse events at each dose. Secondary outcome measures pertain to pharmacokinetics and pharmacodynamics: (1) time to maximal serum concentration; (2) serum half-life; (3) effect of the highest tolerated dose on resting-state functional MRI biomarkers of connectivity; and (4) effect of each dose on EEG biomarkers of cerebral cortical function. Predetermined safety and pharmacodynamic criteria must be fulfilled in Phase 1 to proceed to Phase 2A. Pharmacokinetic data from Phase 1 will also inform the study design of Phase 2A, where we will test the hypothesis that personalized connectome maps predict therapeutic responses to intravenous methylphenidate. Likewise, findings from Phase 2A will inform the design of Phase 2B, where we plan to enroll patients based on their personalized connectome maps. By selecting patients for clinical trials based on a principled, mechanistic assessment of their neuroanatomic potential for a therapeutic response, the CCTP paradigm and the STIMPACT trial have the potential to transform the therapeutic landscape in the ICU and improve outcomes for patients with severe brain injuries.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Conectoma , Estado de Consciência , Humanos , Unidades de Terapia Intensiva , Resultado do Tratamento
3.
Crit Care Med ; 45(7): e683-e690, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28441231

RESUMO

OBJECTIVE: To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. DESIGN: Multicenter, pilot study. SETTING: Several ICUs at Massachusetts General Hospital, Boston, MA. PATIENTS: We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives. MEASUREMENTS AND MAIN RESULTS: As "ground truth" for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted "comatose" (-5), "deeply sedated" (-4 to -3), "lightly sedated" (-2 to 0), and "agitated" (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual's labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%. CONCLUSIONS: With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation.


Assuntos
Anestesia/métodos , Eletrocardiografia , Frequência Cardíaca/fisiologia , Respiração Artificial/métodos , Máquina de Vetores de Suporte , Idoso , Algoritmos , Boston , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Projetos Piloto
4.
Crit Care Med ; 44(9): e782-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27035240

RESUMO

OBJECTIVE: To explore the potential value of heart rate variability features for automated monitoring of sedation levels in mechanically ventilated ICU patients. DESIGN: Multicenter, pilot study. SETTING: Several ICUs at Massachusetts General Hospital, Boston, MA. PATIENTS: Electrocardiogram recordings from 40 mechanically ventilated adult patients receiving sedatives in an ICU setting were used to develop and test the proposed automated system. MEASUREMENTS AND MAIN RESULTS: Richmond Agitation-Sedation Scale scores were acquired prospectively to assess patient sedation levels and were used as ground truth. Richmond Agitation-Sedation Scale scores were grouped into four levels, denoted "unarousable" (Richmond Agitation- Sedation Scale = -5, -4), "sedated" (-3, -2, -1), "awake" (0), "agitated" (+1, +2, +3, +4). A multiclass support vector machine algorithm was used for classification. Classifier training and performance evaluations were carried out using leave-oneout cross validation. An overall accuracy of 69% was achieved for discriminating between the four levels of sedation. The proposed system was able to reliably discriminate (accuracy = 79%) between sedated (Richmond Agitation-Sedation Scale < 0) and nonsedated states (Richmond Agitation-Sedation Scale > 0). CONCLUSIONS: With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and undersedation.


Assuntos
Sedação Consciente , Cuidados Críticos , Frequência Cardíaca/fisiologia , Hipnóticos e Sedativos , Agitação Psicomotora/fisiopatologia , Respiração Artificial , Adulto , Idoso , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
5.
Phys Rev Lett ; 115(10): 108103, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382705

RESUMO

Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.


Assuntos
Anestesia Geral , Estado de Consciência/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Vias Aferentes/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Humanos , Rede Nervosa/fisiologia , Tálamo/citologia , Tálamo/fisiologia
6.
Nat Commun ; 14(1): 1748, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991011

RESUMO

Ketamine produces antidepressant effects in patients with treatment-resistant depression, but its usefulness is limited by its psychotropic side effects. Ketamine is thought to act via NMDA receptors and HCN1 channels to produce brain oscillations that are related to these effects. Using human intracranial recordings, we found that ketamine produces gamma oscillations in prefrontal cortex and hippocampus, structures previously implicated in ketamine's antidepressant effects, and a 3 Hz oscillation in posteromedial cortex, previously proposed as a mechanism for its dissociative effects. We analyzed oscillatory changes after subsequent propofol administration, whose GABAergic activity antagonizes ketamine's NMDA-mediated disinhibition, alongside a shared HCN1 inhibitory effect, to identify dynamics attributable to NMDA-mediated disinhibition versus HCN1 inhibition. Our results suggest that ketamine engages different neural circuits in distinct frequency-dependent patterns of activity to produce its antidepressant and dissociative sensory effects. These insights may help guide the development of brain dynamic biomarkers and novel therapeutics for depression.


Assuntos
Ketamina , Propofol , Humanos , Ketamina/farmacologia , Ketamina/uso terapêutico , Propofol/farmacologia , N-Metilaspartato , Neurofisiologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Córtex Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Cortex ; 152: 136-152, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569326

RESUMO

Tools assaying the neural networks that modulate consciousness may facilitate tracking of recovery after acute severe brain injury. The ABCD framework classifies resting-state EEG into categories reflecting levels of thalamocortical network function that correlate with outcome in post-cardiac arrest coma. In this longitudinal cohort study, we applied the ABCD framework to 20 patients with acute severe traumatic brain injury requiring intensive care (12 of whom were also studied at ≥6-months post-injury) and 16 healthy controls. We tested four hypotheses: 1) EEG ABCD classifications are spatially heterogeneous and temporally variable; 2) ABCD classifications improve longitudinally, commensurate with the degree of behavioral recovery; 3) ABCD classifications correlate with behavioral level of consciousness; and 4) the Coma Recovery Scale-Revised arousal facilitation protocol yields improved ABCD classifications. Channel-level EEG power spectra were classified based on spectral peaks within pre-defined frequency bands: 'A' = no peaks above delta (<4 Hz) range (complete thalamocortical disruption); 'B' = theta (4-8 Hz) peak (severe thalamocortical disruption); 'C' = theta and beta (13-24 Hz) peaks (moderate thalamocortical disruption); or 'D' = alpha (8-13 Hz) and beta peaks (normal thalamocortical function). Acutely, 95% of patients demonstrated 'D' signals in at least one channel but exhibited within-session temporal variability and spatial heterogeneity in the proportion of different channel-level ABCD classifications. By contrast, healthy participants and patients at follow-up consistently demonstrated signals corresponding to intact thalamocortical network function. Patients demonstrated longitudinal improvement in ABCD classifications (p < .05) and ABCD classification distinguished patients with and without command-following in the subacute-to-chronic phase of recovery (p < .01). In patients studied acutely, ABCD classifications improved after the Coma Recovery Scale-Revised arousal facilitation protocol (p < .05) but did not correspond with behavioral level of consciousness. These findings support the use of the ABCD framework to characterize channel-level EEG dynamics and track fluctuations in functional thalamocortical network integrity in spatial detail.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Coma , Eletroencefalografia , Humanos , Estudos Longitudinais
8.
PLoS One ; 16(12): e0259840, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855749

RESUMO

BACKGROUND: We investigated the effect of delirium burden in mechanically ventilated patients, beginning in the ICU and continuing throughout hospitalization, on functional neurologic outcomes up to 2.5 years following critical illness. METHODS: Prospective cohort study of enrolling 178 consecutive mechanically ventilated adult medical and surgical ICU patients between October 2013 and May 2016. Altogether, patients were assessed daily for delirium 2941days using the Confusion Assessment Method for the ICU (CAM-ICU). Hospitalization delirium burden (DB) was quantified as number of hospital days with delirium divided by total days at risk. Survival status up to 2.5 years and neurologic outcomes using the Glasgow Outcome Scale were recorded at discharge 3, 6, and 12 months post-discharge. RESULTS: Of 178 patients, 19 (10.7%) were excluded from outcome analyses due to persistent coma. Among the remaining 159, 123 (77.4%) experienced delirium. DB was independently associated with >4-fold increased mortality at 2.5 years following ICU admission (adjusted hazard ratio [aHR], 4.77; 95% CI, 2.10-10.83; P < .001), and worse neurologic outcome at discharge (adjusted odds ratio [aOR], 0.02; 0.01-0.09; P < .001), 3 (aOR, 0.11; 0.04-0.31; P < .001), 6 (aOR, 0.10; 0.04-0.29; P < .001), and 12 months (aOR, 0.19; 0.07-0.52; P = .001). DB in the ICU alone was not associated with mortality (HR, 1.79; 0.93-3.44; P = .082) and predicted neurologic outcome less strongly than entire hospital stay DB. Similarly, the number of delirium days in the ICU and for whole hospitalization were not associated with mortality (HR, 1.00; 0.93-1.08; P = .917 and HR, 0.98; 0.94-1.03, P = .535) nor with neurological outcomes, except for the association between ICU delirium days and neurological outcome at discharge (OR, 0.90; 0.81-0.99, P = .038). CONCLUSIONS: Delirium burden throughout hospitalization independently predicts long term neurologic outcomes and death up to 2.5 years after critical illness, and is more predictive than delirium burden in the ICU alone and number of delirium days.


Assuntos
Delírio/mortalidade , Delírio/fisiopatologia , Unidades de Terapia Intensiva , Idoso , Analgésicos/uso terapêutico , Coma/mortalidade , Coma/fisiopatologia , Estado Terminal/mortalidade , Feminino , Seguimentos , Humanos , Hipnóticos e Sedativos/uso terapêutico , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/etiologia , Prevalência , Estudos Prospectivos , Respiração Artificial
9.
PLoS One ; 16(5): e0246165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33956800

RESUMO

In current anesthesiology practice, anesthesiologists infer the state of unconsciousness without directly monitoring the brain. Drug- and patient-specific electroencephalographic (EEG) signatures of anesthesia-induced unconsciousness have been identified previously. We applied machine learning approaches to construct classification models for real-time tracking of unconscious state during anesthesia-induced unconsciousness. We used cross-validation to select and train the best performing models using 33,159 2s segments of EEG data recorded from 7 healthy volunteers who received increasing infusions of propofol while responding to stimuli to directly assess unconsciousness. Cross-validated models of unconsciousness performed very well when tested on 13,929 2s EEG segments from 3 left-out volunteers collected under the same conditions (median volunteer AUCs 0.99-0.99). Models showed strong generalization when tested on a cohort of 27 surgical patients receiving solely propofol collected in a separate clinical dataset under different circumstances and using different hardware (median patient AUCs 0.95-0.98), with model predictions corresponding with actions taken by the anesthesiologist during the cases. Performance was also strong for 17 patients receiving sevoflurane (alone or in addition to propofol) (median AUCs 0.88-0.92). These results indicate that EEG spectral features can predict unconsciousness, even when tested on a different anesthetic that acts with a similar neural mechanism. With high performance predictions of unconsciousness, we can accurately monitor anesthetic state, and this approach may be used to engineer infusion pumps to intelligibly respond to patients' neural activity.


Assuntos
Eletroencefalografia , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Inconsciência/fisiopatologia , Anestésicos Intravenosos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Eletroencefalografia/efeitos dos fármacos , Humanos , Masculino , Sevoflurano/efeitos adversos , Inconsciência/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa