Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856368

RESUMO

An electrochemical method was developed for ultrasensitive and selective detection of dopamine in human serum using mesoporous silica thin film modified gold microelectrodes. Vertically aligned mesoporous silica thin films were deposited onto Au microelectrodes by electrochemically assisted self-assembly (EASA). The mesochannels have uniform pore sizes of 2.1 nm in diameter and a negatively charged wall surface. Cyclic voltammetry reveals effective charge permselectivity through the negatively charged mesoporous channels. By using differential pulse voltammetry, the mesoporous silica thin film modified Au microelectrode can be employed for the ultrasensitive detection of dopamine with a detection limit as low as 0.084 µM. In addition, thanks to the electrostatic and steric effects of the silica mesochannels, excellent anti-interference and anti-fouling properties of the electrochemical sensors are demonstrated.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677991

RESUMO

Direct, rapid, and sensitive detection of drugs in complex biological samples is essential for drug abuse control and health risk assessment. In this work, an electrochemical sensor was fabricated based on equipment of vertically-ordered mesoporous silica film (VMSF) on an electrochemically pre-treated three-dimensional graphene electrode (p-3DG), which can achieve direct and sensitive determination of methylthiopyridazine (TR) in urine. Three-dimensional graphene (3DG) with a continuous and interpenetrating graphene network was used as the supporting electrode and simple electrochemical polarization was employed to pre-treat 3DG to improve surface hydrophilicity and electrocatalytic performance. VMSF was easily grown using an electrochemical assisted self-assembly method within 10 s and was stably bound to the p-3DG surface. The nanochannel array on the as-prepared VMSF/p-3DG sensor enriched positively charged TR, leading to significantly improved electrochemical signal. Combined with the high electric activity of p-3DG and the enrichment of nanochannels, VMSF/p-3DG realized sensitive determination of TR ranging from 50 nM to 10 µM with a low detection limit (DL, 30 nM). Owing to the anti-fouling and anti-interference performance of VMSF, the common electroactive molecules including ascorbic acid (AA) and uric acid (UA) did not interfere with the detection. In addition, the detection of TR in buffer and urine exhibited similar sensitivity. Accurate detection of TR in urine was realized.

3.
Front Nutr ; 9: 987442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110406

RESUMO

Vertically ordered mesoporous silica film (VMSF) with uniform mesoporous channels perpendicular to electrode substrate has a wide range of applications in direct electroanalysis of complex samples. However, the detection of nucleic acid bases is difficult to realize at the commonly used VMSF-modified indium tin oxide (VMSF/ITO) electrode due to the high overpotentials of underlying ITO for many small organic molecules. In this work, we demonstrated an electrochemical method for the sensitive detection of guanine (G) by integration of VMSF/ITO and tris(2,2'-bipyridine) ruthenium (II) [Ru(bpy)3 2+] redox mediator. Ru(bpy)3 2+ electrostatically accumulated by VMSF is able to act as an electron shuttle between G and underlying ITO surface, showing electrocatalytic oxidation of G and enabling the quantitative determination of G with a limit of detection (LOD) of 0.058 µM and a limit of quantitation (LOQ) of 0.2 µM. Electrochemical detection performance for G could be regulated by changing the pH of the supporting electrolyte and the content of Ru(bpy)3 2+, achieving a wide dynamic linear range from 0.2 to 10 µM (R 2 = 0.999), 2 to 100 µM (R 2 = 0.999), and 10 to 500 µM (R 2 = 0.998). Furthermore, owing to the good anti-fouling and anti-interference ability of VMSF, this simply sensing strategy can be applied to the direct and rapid detection of G in beer samples, and the detection of ganciclovir (G analog) content in ganciclovir eye drops.

4.
Nanomaterials (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35010015

RESUMO

Three-dimensional graphene (3DG) with macroporous structure has great potential in the field of electroanalysis owing to a large active area, excellent electron mobility and good mass transfer. However, simple and low-cost preparation of 3DG electrodes with high electrocatalytic ability is still a challenge. Here, a fast and convenient electrochemical polarization method is established to pretreat free-standing 3DG (p-3DG) to offer high electrocatalytic ability. 3DG with monolithic and macroporous structure prepared by chemical vapor deposition (CVD) is applied as the starting electrode. Electrochemical polarization is performed using electrochemical oxidation (anodization) at high potential (+6 V) followed with electrochemical reduction (cathodization) at low potential (-1 V), leading to exposure of edge of graphene and introduction of oxygen-containing groups. The as-prepared p-3DG displays increased hydrophilicity and improved electrocatalytic ability. As a proof of concept, p-3DG was used to selective electrochemical detection of two isomers of benzenediol, hydroquinone (p-BD) and catechol (o-BD). In comparison with initial 3DG, p-3DG exhibits increased reversibility of redox reaction, improved peak current and good potential resolution with high potential separation between p-BD and o-BD. Individual or selective determination of p-BD or o-BD in single substance solution or binary mixed solution is realized. Real analysis of pond water is also achieved.

5.
Front Chem ; 9: 812086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096772

RESUMO

Convenient and sensitive detection of active analytes in complex matrix is crucial in biological, medical, and environmental analysis. Silica nanochannel array film (SNF) equipped electrochemical sensors have shown excellent anti-fouling performance in direct analysis of complex samples. In this work, we demonstrated an electrochemical sensor with anti-fouling performance for highly sensitive detection of acetaminophen (APAP) based on SNF supported by ß-cyclodextrin-graphene (CDG) nanocomposite modified Au film electrode (AuF). Because of their rich surface hydroxyls and 2D lamellar structure, CDG on AuF can serve as the nanoadhesive for compact binding SNF, which can be grown by electrochemical assisted self-assembly method in a few seconds. Attributable to the electrocatalytic property of graphene and the synergistic enrichment from both CD and SNF nanochannels towards analyte, the SNF/CDG/AuF sensor demonstrates sensitive detection of acetaminophen ranged from 0.2 to 50 µM with an ultralow limit-of-detection of 14 nM. Taking advantage of the anti-fouling ability of SNF, the sensor is able to realize accurate and convenient analysis of APAP in commercially available paracetamol tablets.

6.
Front Chem ; 9: 770512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881226

RESUMO

Three-dimensional (3D) electrochemiluminescence (ECL) platform with high sensitivity and good anti-fouling is highly desirable for direct and sensitive analysis of complex samples. Herein, a novel ECL-sensing platform is demonstrated based on the equipment of vertically ordered mesoporous silica-nanochannel films (VMSF) on monolithic and macroporous 3D graphene (3DG). Through electrografting of 3-aminopropyltriethoxysilane (APTES) onto 3DG as molecular glue, VMSF grown by electrochemically assisted self-assembly (EASA) method fully covers 3DG surface and displays high stability. The developed VMSF/APTES/3DG sensor exhibits highly sensitized ECL response of tris(2,2'-bipyridyl) ruthenium (Ru (bpy)3 2+) taking advantages of the unique characteristics of 3DG (high active area and conductivity) and VMSF nanochannels (strong electrostatic enrichment). The VMSF/APTES/3DG sensor is applied to sensitively detect an important environmental pollutant (4-chlorophenol, with limit of detection or LOD of 30.3 nM) in term of its quenching effect (ECL signal-off mode) toward ECL of Ru (bpy)3 2+/tri-n-propylamine (TPrA). The VMSF/APTES/3DG sensor can also sensitively detect the most effective antihistamines chlorpheniramine (with LOD of 430 nM) using ECL signal-on mode because it acts as co-reactant to promote the ECL of Ru (bpy)3 2+. Combined with the excellent antifouling ability of VMSF, the sensor can also realize the analysis of actual environmental (lake water) and pharmaceutical (pharmacy tablet) samples. The proposed 3D ECL sensor may open new avenues to develop highly sensitive ECL-sensing platform.

7.
Talanta ; 225: 122066, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592785

RESUMO

Vertically-ordered mesoporous silica-nanochannel films (VMSF) with highly ordered nanochannels, uniform and adjustable pore size, ultra-thin thickness, and high porosity, have attracted considerable attention in analysis, molecular separation, catalysis, and nanomaterial synthesis. However, their widespread applications in practical electrochemical sensing are largely limited by the poor adhesion to common electrode materials, especially the lack of highly active substrate electrode to equip mechanically stable VMSF. Herein, we report a facile strategy to fabricate VMSF on widely used sensing electrodes without the use of any chemical adhesive for developing superior VMSF based electrochemical sensors. We demonstrate that simple electrochemical polarization (anodic polarization and subsequent cathodic reduction) to activate glassy carbon electrode (GCE) can generate a suitable surface environment allowing direct growth of stable VMSF on such pre-activated GCE (p-GCE) via electrochemically assisted self-assembly (EASA). Compared to traditional VMSF electrodes with ITO or organosilane grafted GCE as substrate, the developed VMSF/p-GCE exhibits much higher electrochemical response to four redox biomarkers (norepinephrine, dopamine, tryptophan, and uric acid). In-depth insights on mechanisms of the high electrochemical activity and incorporation stability of VMSF/p-GCE are made. We further demonstrate the VMSF/p-GCE can be employed to detect dopamine in real serum samples with exceptional sensitivity, low detection potential, as well as superior anti-interference and anti-fouling performance. In addition, high selectivity is realized as the common co-existing interference substances (ascorbic acid-AA and uric acid-UA) do not interfere with the detection.

8.
J Hazard Mater ; 410: 124636, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33248825

RESUMO

Herein we demonstrate a simple and rapid electrochemical method for selectively enhanced determination of catechol (CC) or hydroquinone (HQ) isomers in environmental water samples by tailoring the molecular permeability of vertically-ordered mesoporous silica-nanochannel films on electrochemically reduced graphene oxide (VMSF/ErGO). Such VMSF/ErGO composite film was fabricated on the gold electrode (AuE) surface using electrochemically assisted self-assembly approach. The as-prepared electrodes with surfactant micelles (SM) template inside silica nanochannels, designed as SM/VMSF/ErGO/AuE, possess hydrophobic hydrocarbon cores and show preferential response to CC via hydrophobic effect. After removing SM from silica nanochannels, the obtained VMSF/ErGO/AuE displays more sensitive response to HQ, which is due to the hydrogen bond effect between the silanol groups of silica walls and HQ. Given the potential-resolved and high electrocatalytic ability of ErGO, and molecular permeability and anti-fouling ability of VMSF, these two present sensors could detect CC and HQ in lake water with a low limit of detection (18 nM for CC and 16 nM for HQ), and a high sensitivity (0.33 µA/µM for CC and 0.37 µA/µM for HQ), without complicated sample pretreatment. Moreover, the proposed sensors provide a convenient, rapid and economic way for direct analysis of environmental water samples, exhibiting excellent long-term stability.

9.
J Mater Chem B ; 8(46): 10630-10636, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33146656

RESUMO

Herein we report a simple and rapid approach to fabricate a vertically-ordered mesoporous silica-electrochemically reduced graphene oxide nanocomposite film (VMSF/ErGO) on an indium tin oxide (ITO) electrode surface by the electrochemically-assisted self-assembly (EASA) method, which is capable of greatly promoting the electroanalytical performance of rutin compared to the previously reported VMSF modified ITO electrode and, meanwhile, displaying excellent anti-fouling and anti-interference ability in pharmaceutical formulations and human serum. Due to the excellent electrocatalytic activity of ErGO and the synergistic enrichment effects from the π-π interaction of ErGO and the hydrogen bond effect from the VMSF, the present VMSF/ErGO/ITO sensor is able to detect rutin with a wide linear range, a high sensitivity and a low limit of detection. Moreover, the VMSF/ErGO/ITO electrode could retain the high sensing performance with high transmittance upon tailoring the concentration of the modified graphene oxide (GO), which provides a simple approach for modifying transparent ITO electrodes and could be potentially used for optoelectronic devices.


Assuntos
Grafite/química , Membranas Artificiais , Nanocompostos/química , Rutina/sangue , Dióxido de Silício/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa