Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurol ; 24(1): 254, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048961

RESUMO

OBJECTIVE: The primary objective of this study was to explore the clinical characteristics of apoplectic intratumoral hemorrhage in gliomas and offer insights for improving the diagnosis and treatment of this disease. METHODS: We analyzed the clinical data of 35 patients with glioma and hemorrhage. There were eight cases of multiple cerebral lobe involvement, and 22 cases involved a single lobe. Twenty-one patients had a preoperative Glasgow Coma Scale (GCS) score of ≥ 9 and had a craniotomy with tumor resection and hematoma evacuation after undergoing preoperative preparation. A total of 14 patients with GCS < 9, including one with thalamic hemorrhage breaking into the ventricles and acute obstructive hydrocephalus, underwent craniotomy for tumor resection after external ventricular drainage (EVD). One patient had combined thrombocytopenia, which was surgically treated after platelet levels were normalized through transfusion. The remaining 12 patients received immediate intervention in the form of craniotomy hematoma evacuation and tumor resection. RESULTS: We performed subtotal resection on three tumors of thalamic origin and two tumors of corpus callosum origin, but we were able to successfully resect all the tumors in other locations that were gross total resection Pathology results showed that 71.43% of cases accounted for WHO-grade 4 tumors. Among the 21 patients with a GCS score of ≥ 9, two died perioperatively. Fourteen patients had a GCS score < 9, of which eight patients died perioperatively. CONCLUSIONS: Patients with a preoperative GCS score ≥ 9 who underwent subemergency surgery and received aggressive treatment showed a reasonable prognosis. We found their long-term outcomes to be correlated with the pathology findings. On the other hand, patients with a preoperative GCS score < 9 required emergency treatment and had a high perioperative mortality rate.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/complicações , Glioma/cirurgia , Masculino , Feminino , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/complicações , Pessoa de Meia-Idade , Adulto , Idoso , Adulto Jovem , Adolescente , Hemorragia Cerebral/cirurgia , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/complicações , Criança , Craniotomia/métodos , Escala de Coma de Glasgow , Estudos Retrospectivos , Resultado do Tratamento
2.
Se Pu ; 42(7): 702-710, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966978

RESUMO

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Assuntos
Ciclo do Ácido Cítrico , Humanos , Células HeLa , Ácido Succínico/metabolismo , Ácido Succínico/química , Fumaratos/metabolismo , Fumaratos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa