Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(11): 6260-6265, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32129384

RESUMO

State-to-state photodissociation of carbon dioxide (CO2) via the 3p1Πu Rydberg state was investigated by the time-sliced velocity map ion imaging technique (TSVMI) using a tunable vacuum ultraviolet free electron laser (VUV FEL) source. Raw images of the O(1S) products resulting from the O(1S) + CO(X1Σ+) channel were acquired at the photolysis wavelengths between 107.37 and 108.84 nm. From the vibrational resolved O(1S) images, the product total kinetic energy releases and the vibrational state distributions of the CO(X1Σ+) co-products were obtained, respectively. It is found that vibrationally excited CO co-products populate at as high as v = 6 or 7 while peaking at v = 1 and v = 4, and most of the individual vibrational peaks present a bimodal rotational structure. Furthermore, the angular distributions at all studied photolysis wavelengths have also been determined. The associated vibrational-state specific anisotropy parameters (ß) exhibit a photolysis wavelength-dependent feature, in which the ß-values observed at 108.01 nm and 108.27 nm are more positive than those at 107.37 nm and 107.52 nm, while the ß-values have almost isotropic behaviour at 108.84 nm. These experimental results indicate that the initially prepared CO2 molecules around 108 nm should decay to the 41A' state via non-adiabatic coupling, and dissociate in the 41A' state to produce O(1S) + CO(X1Σ+) products with different dissociation time scales.

2.
Phys Chem Chem Phys ; 22(8): 4379-4386, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904071

RESUMO

Photodissociation dynamics of H2O and D2O via the D[combining tilde] state by one-photon excitation have been investigated using the H/D atom Rydberg tagging time-of-flight technique. The TOF spectra of the H/D-atom product in both parallel and perpendicular polarizations have been measured. Product translational energy distributions and angular distributions have been derived from TOF spectra. By simulating these distributions, quantum state distributions of the OH/OD product as well as the state-resolved angular anisotropy parameters were determined. The most important pathway of H2O/D2O dissociation via the D[combining tilde] state leads to highly rotationally excited OH/OD(X, v = 0) products, while vibrationally excited OH/OD products with v≥ 1 comprise only one third of the total OH/OD(X) population. The branching ratios of OH(A)/OH(X) and OD(A)/OD(X) have also been determined, 1.0/3.0 for H2O at 122.12 nm and 1.0/2.2 for D2O at 121.95 nm, which are reasonably consistent with the values predicted by the previous theory.

3.
J Chem Phys ; 151(21): 214306, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822085

RESUMO

Understanding vacuum ultraviolet (VUV) photodissociation dynamics of CO2 is of considerable importance in the study of atmospheric chemistry and planetary chemistry. Yet, photodissociation dynamics of the spin-forbidden O(3Pj=2,1,0) + CO(X1Σ+) channel has not been clearly understood so far. Here, we study the O(3Pj) + CO(X1Σ+) dissociation processes in the VUV photodissociation of CO2 at the photolysis wavelengths between 129.02 and 134.67 nm by using the time-sliced velocity-mapped ion imaging technique. From the vibrational-resolved images of the O(3Pj=2,1,0) photofragment, the total kinetic energy releases, the CO(X1Σ+) cofragment vibrational state distributions, and the product angular distributions have been derived, respectively. The experimental observations show that the total kinetic energy releases for the three 3Pj spin-orbit states (j = 2, 1, 0) exhibit a broad CO(X1Σ+) vibrational energy distribution with significant inverted characteristics, especially at short photoexcitation wavelengths, indicating that the VUV photodissociation could take place in a relatively linear geometry of the triplet state, with one C-O bond extended and the other compressed. Furthermore, a notable photolysis wavelength dependent feature has also been found in the product angular distributions of all three spin-orbit channels (j = 2, 1, 0): Only the vibrational-state specific anisotropy parameter ß values at 130.18 nm behave more anisotropic, while all those at other photolysis wavelengths are near the value ß = 0.5 for O(3Pj=2,1) channels or ß = 0.25 for the O(3Pj=0) channel, with small fluctuations. This anomalous phenomenon suggests that the different nonadiabatic interactions, such as singlet-triplet coupling, may play a key role in the formation of O(3Pj=2,1,0) + CO(X1Σ+) products, with strong photolysis wavelength dependence.

4.
J Chem Phys ; 149(10): 104309, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30219012

RESUMO

We study the vacuum ultraviolet photodissociation dynamics of N2O via the C1Π state by using the time-sliced velocity map ion imaging technique. Images of N(2Dj=5/2, 3/2) products from the N atom elimination channels were acquired at a set of photolysis wavelengths from 142.55 to 148.19 nm. Vibrational states of the NO(X2Π) co-fragments were partially resolved in experimental images. From these images, the product total kinetic energy release distributions (TKERs), branching ratios of the vibrational states of NO(X2Π) co-fragments, and the vibrational state specific angular anisotropy parameters (ß) have been determined. Notable features were found in the experimental results: the TKERs show that the NO(X2Π) co-fragments are highly vibrationally excited. For the highly vibrationally excited state of NO(X2Π), a bimodal rotational structure is found at all the studied photolysis wavelengths. Furthermore, the vibrational state specific ß values of both spin-orbit channels (j = 3/2, 5/2) clearly show a monotonic decrease as the vibrational quantum number of NO(X2Π) increases. These observations suggest that multiple dissociation pathways play a role in the formation of the N(2Dj=5/2, 3/2) + NO(X2Π) products: one corresponds to a fast dissociation pathway through the linear state (the C1Π state) following the initial excitation to a slightly bent geometry in the vicinity of the linear C1Π configuration, leading to the low rotationally excited components with relatively large ß values; the other corresponds to a relatively slow dissociation pathway through the bent C(31A') or C(31A″) state, leading to moderately rotationally excited NO(X2Π) products with smaller ß values.

5.
Nat Commun ; 11(1): 1547, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210241

RESUMO

Hydrogen sulfide radicals in the ground state, SH(X), and hydrogen disulfide molecules, H2S, are both detected in the interstellar medium, but the returned SH(X)/H2S abundance ratios imply a depletion of the former relative to that predicted by current models (which assume that photon absorption by H2S at energies below the ionization limit results in H + SH photoproducts). Here we report that translational spectroscopy measurements of the H atoms and S(1D) atoms formed by photolysis of jet-cooled H2S molecules at many wavelengths in the range 122 ≤ λ ≤155 nm offer a rationale for this apparent depletion; the quantum yield for forming SH(X) products, Γ, decreases from unity (at the longest excitation wavelengths) to zero at short wavelengths. Convoluting the wavelength dependences of Γ, the H2S parent absorption and the interstellar radiation field implies that only ~26% of photoexcitation events result in SH(X) products. The findings suggest a need to revise the relevant astrochemical models.

6.
J Phys Chem Lett ; 10(15): 4209-4214, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295400

RESUMO

Investigations of the photofragmentation patterns of both light and heavy water at the state-to-state level are a prerequisite for any thorough understanding of chemical processing and isotope heterogeneity in the interstellar medium. Here we reveal dynamical features of the dissociation of water molecules following excitation to the C̃(010) state using a tunable vacuum ultraviolet source in combination with the high-resolution H(D)-atom Rydberg tagging time-of-flight technique. The action spectra for forming H(D) atoms and the OH(OD) product state distributions resulting from excitation to the C̃(010) states of H2O and D2O both show striking differences, which are attributable to the effects of an isotopologue-specific accidental resonance. Such accidental-resonance-induced state mixing may contribute to the D/H isotope heterogeneity in the solar system. The present study provides an excellent example of competitive state-to-state nonadiabatic decay pathways involving at least five electronic states.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa