RESUMO
Nonalcoholic fatty liver disease (NAFLD), which affects approximately 25% of the global population, is an urgent health issue leading to various metabolic comorbidities. Circular RNAs (circRNAs), covalently closed RNA molecules, are characterized by ubiquity, diversity, stability, and conservatism. Indeed, they participate in various biological processes via distinct mechanisms that could modify the natural history of NAFLD. In this review, we briefly introduce the biogenesis, characteristics, and biological functions of circRNAs. Furthermore, we summarize circRNAs expression profiles in NAFLD by intersecting seven sequencing data sets and describe the cellular roles of circRNAs and their potential advantages as biomarkers of NAFLD. In addition, we emphatically discuss the exosomal non-coding RNA sorting mechanisms and possible functions in recipient cells. Finally, we extensively discuss the potential application of targeting disease-related circRNAs and competing endogenous RNA networks through gain-of-function and loss-of-function approaches in targeted therapy of NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Relevância Clínica , RNA/genética , RNA/metabolismo , BiomarcadoresRESUMO
Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.
Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Microbioma Gastrointestinal , NF-kappa B , Transdução de Sinais , Wolfiporia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , NF-kappa B/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Wolfiporia/química , Masculino , Modelos Animais de Doenças , Citocinas/metabolismo , Colo/patologia , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/microbiologia , Proteínas de Junções Íntimas/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Hyperuricemia (HUA) is a disorder of uric acid metabolism, which can lead to the formation of gouty arthritis, kidney inflammation and other damages. Previous studies have found that the alcohol extract of Poria cutis can reduce the level of uric acid and protect against kidney injury. Based on network pharmacology, the core targets and main active components of P. cutis intervention in HUA were determined. Most of the potential active ingredients are triterpenoid acids such as tumulosic acid (TA) and eburicoic acid (EA), and the potential targets are TNF and IL-6, which are associated with inflammation. In vitro experiments have shown that TA can significantly inhibit the release of NO, TNF-α and IL-6 in inflammatory RAW264.7 cell culture medium and the expression of TNF-α and IL-6 in RAW264.7 cells. This study suggests that TA based on network pharmacological screening has obvious anti-inflammatory effect on inflammatory RAW264.7 cells and is a promising anti-inflammatory compound.
Assuntos
Anti-Inflamatórios , Interleucina-6 , Farmacologia em Rede , Óxido Nítrico , Fator de Necrose Tumoral alfa , Wolfiporia , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Interleucina-6/metabolismo , Células RAW 264.7 , Wolfiporia/química , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Triterpenos/farmacologia , Hiperuricemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/patologia , Linhagem CelularRESUMO
In this study, we present nanofluidic diodes fabricated from straight glass nanochannels and functionalized using bio-inspired polydopamine (PDA) and poly-L-lysine (PLL) coatings. The resulting PDA coatings are shown to be asymmetric due to a combination of transport considerations which can be leveraged to provide a measure of control over the effective channel geometry. By subsequently introducing a layer of amine-bearing PLL chains covalently bound to the PDA, we enhance heterogeneities in the charge and ion distributions within the channel and enable significant current rectification between forward-bias and reverse-bias modes; our PDA-PLL-coated channels yielded a rectification ratio greater than 1000 in a 100 nm channel filled with 0.01× phosphate-buffered saline solution (PBS). We further demonstrated that at higher ionic strength conditions, reducing the solution pH increased the number of protonated amines within the PLL layer, amplifying the charge disparities along the channel and leading to greater rectification. As nanofluidic diodes with bipolar surface charge distributions tend to provide superior performance compared to those with a single wall charge polarity, we imposed a more bipolar charge distribution in our devices by partially coating our PDA-PLL-coated channels with negatively charged polyacrylic acid (PAA). These enhanced bipolar channels exhibited greater current rectification than the PDA-PLL-coated channels, reaching rectification ratios in excess of 100 even in more physiologically-relevant 1× PBS solutions. Our fabrication approach and the results herein provide a promising platform from which the scientific community can build upon in the relentless endeavor for improved sensitivity in biosensors and other analytical devices.
RESUMO
Drug-related adverse reactions are among the main reasons for harm to patients under care worldwide and even their deaths. The pharmacovigilance system has been proven to be an effective method of avoiding or alleviating such adverse events. In 2019, after two decades of implementation of the drug-related adverse reaction reporting system, China formally implemented a pharmacovigilance system with the Pharmacovigilance Quality Management Standards and a series of supporting technical documents created to improve the safety of medication given to patients. China's pharmacovigilance system has faced many problems and challenges during its implementation. This spontaneous reporting system is the main source of data for China's medication vigilance activities, but it has not provided sufficiently powerful evidence for regulatory decision-making. In conformity with the health-centred drug regulatory concept, the Chinese government has accelerated the speed of examination and approval of urgently needed clinical drugs and orphan drugs along with the requirement to improve the safety supervision of these drugs after their listing. China's marketing authorization holders (MAHs) must strengthen their pharmacovigilance capabilities as the primary responsible departments for drug safety. Chinese medical schools generally lack professional courses on pharmacovigilance. The regulatory authorities have recognized such problems and have made efforts to improve the professional capacity of pharmacovigilance personnel and to strengthen cooperation with stakeholders through the implementation of an action plan of medication surveillance and the establishment of a patient-based adverse events reporting system and active surveillance systems, which will help China bridge the gap to bring its pharmacovigilance practice up to standards.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacovigilância , Humanos , Sistemas de Notificação de Reações Adversas a Medicamentos , Controle de Medicamentos e Entorpecentes , China/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controleRESUMO
Contrast-induced nephropathy (CIN) is an acute kidney injury (AKI) observed after the administration of contrast media. Calcium channel blockers (CCBs) have been reported to exert a renal protective effect. This study aims to investigate the role of cilnidipine, a novel CCBs, on CIN by regulating the calcium/calmodulin-dependent protein kinase â ¡(CaMKâ ¡)/mitochondrial permeability transition pore (mPTP) pathway. Here, iohexol, a representative contrast media, was used to establish CIN model. KN-93 (CaMKâ ¡ inhibitor) and atractyloside (mPTP opener) were administered in rats, and CaMKâ ¡ overexpression was used in Human proximal tubular epithelial cells. Markers of renal injury (serum creatinine, blood urea nitrogen, and urinary NAGL), hematoxylin-eosin stain, oxidative stress (ROS, superoxide dismutase [SOD], and malondialdehyde [MDA] levels), cell death (MTT and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]), mitochondrial function (mPTP, mitochondrial membrane potential [MMP], and ATP) were assessed. Western blots were used to measure the expression levels of Bax/Bcl-2, caspase-3, CaMKâ ¡/mPTP signaling pathways. Results showed that cilnidipine markedly improved kidney function, and alleviated tubular cell apoptosis, oxidative stress and mitochondrial damage induced by iohexol in vitro and in vivo. The underlying mechanism may be that cilnidipine relieved CaMKâ ¡ activation and mPTP opening induced by iohexol. All of these protective effects of cilnidipine were attenuated by CaMKâ ¡ overexpression and atractyloside (mPTP opener) pretreatment. Moreover, KN-93 (CaMKâ ¡ inhibitor) treatment showed a similar renal protective effect with cilnidipine, while the protective effect of cilnidipine on kidney in CIN rats was not further suppressed by KN-93 cotreatment. These in vitro and in vivo results point toward the fact that cilnidipine might be a novel therapeutic drug against contrast-induced nephrotoxicity in a CaMKâ ¡-dependent manner.
Assuntos
Injúria Renal Aguda , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/uso terapêutico , Iohexol/efeitos adversos , Meios de Contraste/efeitos adversos , Atractilosídeo/efeitos adversos , Apoptose , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológicoRESUMO
Ectopic fat deposition in the liver, known as non-alcoholic fatty liver disease (NAFLD), affects up to 30% of the worldwide population. miRNA-122, the most abundant liver-specific miRNA, protects hepatic steatosis and inhibits cholesterol and fatty acid synthesis in NAFLD. Previously, we have shown that compared with its expression in healthy controls, miRNA-122 decreased in the liver tissue but gradually increased in the serum of patients with non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, suggesting that miRNA-122 could have been transported to the serum. Here, we aimed to confirm and unravel the mechanism of transportation of miRNA-122 to extra-hepatocytes. Our findings showed a decrease in the intra-hepatocyte miRNA-122 and an increase in the extra-hepatocyte (medium level) miRNA-122, suggesting the miRNA-122 "escaped" from the intra-hepatocyte due to an increased extra-hepatocyte excretion. Using bioinformatics tools, we showed that miRNA-122 binds to circPI4KB, which was further validated by an RNA pull-down and luciferase reporter assay. The levels of circPI4KB in intra- and extra-hepatocytes corresponded to that of miRNA-122, and the overexpression of circPI4KB increased the miRNA-122 in extra-hepatocytes, consequently accomplishing a decreased protective role of miRNA-122 in inhibiting the lipid deposition. The present study provides a new explanation for the pathogenesis of the hepatic lipid deposition in NAFLD.
Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Hepatócitos/metabolismo , LipídeosRESUMO
The control of alumina morphology is crucial yet challenging for its various applications. Unfortunately, traditional methods for preparing alumina particles suffer from several limitations such as irregular morphology, poor dispersibility, and restricted application areas. In this study, we develop a novel method for preparing spherical mesoporous alumina using chitin and Pluronic P123 as mixed templates. The effects of reaction temperature, time, and the addition of mixed templates on the phase structure, micromorphology, and optical absorption properties of the samples were investigated. The experimental results indicate that lower temperature and shorter reaction time facilitated the formation of spherical mesoporous alumina with excellent CO2 adsorption capacity. The periodic density functional theory (DFT) calculations demonstrate that both the (110) and (100) surfaces of γ-Al2O3 can strongly adsorb CO2. The difference in the amount of CO2 adsorbed by Al2O3 is mainly due to the different surface areas, which give different numbers of exposed active sites. This approach introduces a novel strategy for utilizing biological compounds to synthesize spherical alumina and greatly enhances mesoporous alumina's application efficiency in adsorption fields. Moreover, this study explored the electrochemical performance of the synthesized product using cyclic voltammetry, and improved loading of electrocatalysts and enhanced electrocatalytic activity were discovered.
RESUMO
Multiple myeloma (MM) is a malignant neoplasm featured by obvious drug resistance and poor prognosis. MicroRNAs (miRNAs) are a class of small noncoding RNAs with crucial roles in many biological processes including cancer initiation and progression. The current study aims to investigate the pathogenic role and molecular mechanism of miRNAs in MM drug resistance. In the present study, The expression profile of miRNAs in MM samples was analyzed by microarray and real-time polymerase chain reaction. Protein expressions were detected by Western blot analysis. Cell apoptosis was detected by the Annexin V staining assay. The interaction between miRNA and the targeting mRNA was assessed using Dual luciferase reporter assay. Herein, we show that expression profile of miRNAs is deregulated in MM. miR-218, one of the most aberrational miRNAs in MM, is significantly decreased in MM cells compared to peripheral blood mononuclear cell (PBMC). Genetic manipulation reveals miR-218 control the response of MM cells to anticancer drug bortezomib (BTZ). Overexpression of miR-218 causes a significant aberrant genes expression including leucine rich repeat containing 28 (LRRC28). Mechanistic study shows that miR-218 control the drug response through mediating the expression of LRRC28 in MM cells. Overexpression of LRRC28 significantly reserves miR-218-mediated cell response to BTZ. Taken together, miR-218 is decreased in MM that contributes to BTZ resistance via targeting LRRC28, which might be used as a novel therapeutic target for multiple myeloma.
Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , MicroRNAs/metabolismo , Adulto , Western Blotting , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , MicroRNAs/genéticaRESUMO
Surface coatings are extensively used in capillary electrophoresis to increase separation efficiency and resolution. The stability of these coatings across a wide pH range is desirable to achieve repeatable migration times; therefore, a comprehensive understanding of coating degradation timescales is needed. We present a novel platform for automated zeta potential analysis based upon current monitoring that delivers improved time resolution over the existing methods. Using our platform, we measure the zeta potential continuously during aminosilane coating reactions and infer changes in the surface composition. We found that the change in the zeta potential after coating depended on the monomer type and solvent, while its stability was influenced by the coating solvent and exposure pH. Our versatile platform provides an elegant approach for evaluating the molecular composition, reactivity, and stability of surfaces in real time.
RESUMO
Human milk is the gold standard for nutrition of infant growth, whose nutritional value is mainly attributed to human milk oligosaccharides (HMOs). HMOs, the third most abundant component of human milk after lactose and lipids, are complex sugars with unique structural diversity which are indigestible by the infant. Acting as prebiotics, multiple beneficial functions of HMO are believed to be exerted through interactions with the gut microbiota either directly or indirectly, such as supporting beneficial bacteria growth, anti-pathogenic effects, and modulation of intestinal epithelial cell response. Recent studies have highlighted that HMOs can boost infants health and reduce disease risk, revealing potential of HMOs in food additive and therapeutics. The present paper discusses recent research in respect to the impact of HMO on the infant gut microbiome, with emphasis on the molecular basis of mechanism underlying beneficial effects of HMOs.
Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Leite Humano/química , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Anti-Infecciosos/farmacologia , Bifidobacterium , Humanos , Lactente , Recém-Nascido , Oligossacarídeos/química , Oligossacarídeos/genética , Prebióticos/análiseRESUMO
BACKGROUND AND AIM: There is debate among the hepatology community regarding the simple non-invasive scoring systems and histological scores (even it was developed for histological classification) in predicting clinical outcomes in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to determine whether the presence of simple non-invasive scoring systems and histological scores could predict all-cause mortality, liver-related mortality, and liver disease decompensation (liver failure, cirrhosis, hepatocellular carcinoma, or decompensated liver disease). METHODS: The pooled hazard ratio of prognostic factors and incidence rate per 1000 person-years in patients with NAFLD was calculated and further adjusted by two different models of handling the duplicated data. RESULTS: A total of 19 longitudinal studies were included. Most simple non-invasive scoring systems (Fibrosis-4 Score, BARD, and aspartate aminotransferase-to-platelet ratio index ) and histological scores (NAFLD activity score, Brunt, and "steatosis, activity, and fibrosis" ) failed in predicting mortality, and only the NAFLD fibrosis score > 0.676 showed prognostic ability to all-cause mortality (four studies, 7564 patients, 118 352 person-years followed up, pooled hazard ratio 1.44, 95% confidence interval [CI] 1.05-1.96). The incidence rate per 1000 person-years of all-cause mortality, liver-related mortality, cardiovascular-related mortality, and liver disease decompensation resulted in a pooled incidence rate per 1000 person-years of 22.65 (14 studies, 95% CI 9.62-53.31), 3.19 (7 studies, 95% CI 1.14-8.93), 6.02 (6 studies, 95% CI 4.69-7.74), and 11.46 (4 studies, 95% CI 5.33-24.63), respectively. CONCLUSION: Non-alcoholic fatty liver disease fibrosis score showed promising prognostic value to all-cause mortality. Most present simple non-invasive scoring systems and histological scores failed to predict clinical outcomes.
Assuntos
Hepatopatia Gordurosa não Alcoólica/mortalidade , Índice de Gravidade de Doença , Humanos , Incidência , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Prognóstico , Modelos de Riscos ProporcionaisRESUMO
OBJECTIVE: Endoscopic ear surgery (EES) is minimally invasive and increasingly used to treat middle ear disease. In this meta-analysis, we compared the efficacies of EES and microscopic ear surgery (MES) in patients with middle ear cholesteatoma. METHODS: The PubMed, Embase, Cochrane Library, and Web of Science databases were searched for studies that reported the comparative surgical outcomes of EES and MES in patients with middle ear cholesteatoma. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. All included studies involved ≥1 of the following outcomes: recurrence of or residual disease, graft intake success rate, audiological performance, and operation time. We calculated the pooled relative risk (RR) or weighted mean difference with 95% confidence intervals (CIs) by using STATA software. RESULTS: Thirteen studies were included in the quantitative meta-analysis. The pooled recurrence and residual rates of cholesteatoma were significantly lower in the EES group than in the MES group [RR: 0.51, 95%CI: 0.31-0.84, heterogeneity (I2) = 4.7%; P = .394; RR: 0.68; 95%CI: 0.47-0.99; I2 = 0.0%; P = .878; respectively]. There were no significant differences in other parameters, such as graft intake success rates, audiological performance, and operation times, between the 2 groups. CONCLUSION: The pooled results showed that EES reduced the residual lesion rate and postoperative recurrence risk in patients with middle ear cholesteatoma. However, there was insufficient evidence to prove that EES was advantageous in graft intake success rate auditory performance, and operation time.
Assuntos
Colesteatoma da Orelha Média/cirurgia , Microscopia , Microcirurgia/métodos , Colesteatoma da Orelha Média/fisiopatologia , Endoscopia/métodos , Feminino , Audição , Humanos , Masculino , Duração da Cirurgia , Procedimentos Cirúrgicos Otológicos/métodos , Recidiva , Risco , Resultado do TratamentoRESUMO
Tea (Camellia sinensis) is one of the most important cash crops in the world. Theanine, as an important amino acid component in tea, is a key quality index for excellent tea quality and high economic value. People increase theanine accumulation in tea mainly through the application of nitrogen fertilizer, shading and pruning. However, these methods are not effective. In this study, we treated tea buds with a 100 µM solution of GA3 containing 1 tween-20, investigated the effects of GA3 on theanine accumulation, bud yield, chlorophyll fluorescence parameters and expression level of theanine biosynthesis pathway genes in tea plant by qPCR, LC-MS/MS etc. Results showed that change trends of theanine and GA3 was extremely positively correlated with each other. Exogenous GA3 upregulated the expression level of theanine biosynthesis pathway genes, caused an increase of theanine content (mg·g-1) by 27% in tea leaves compared with Mock, and accelerated the germination of buds and elongation of shoots, which lead to a significant increase of tea yield by 56% (w/w). Moreover, the decrease of chlorophyll contents, photochemical quenching coefficient (qP) and relative electron transport rate (rETR) under GA3 treatment suggested that GA3 reduced photosynthesis in the tender tea leaves, indicating that the decline of carbon assimilation in tea plants was conducive to the nitrogen metabolism, and it was beneficial to the accumulation of theanine. This study provided a new technical and theoretical support for the precise control of tea quality components and phenophase.
Assuntos
Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Giberelinas/farmacologia , Folhas de Planta/metabolismo , Chá/metabolismo , Aminoácidos/química , Clorofila/química , Cromatografia Líquida , Giberelinas/química , Glutamatos/química , Nitrogênio/metabolismo , Fotossíntese , Proteínas de Plantas/genética , Brotos de Planta , Reação em Cadeia da Polimerase , Espectrometria de Massas em TandemRESUMO
Direct epoxidation of propylene by molecular oxygen alone is one of the "dream reactions" in heterogeneous catalysis. Despite much effort, the yield of propylene epoxide is still too low to be commercially attractive due to the trade-off between conversion and selectivity. Here, we demonstrate that doping Cl into the lattice of Cu2O nanocrystals by the intergrowth method not only can enhance the catalytic selectivity and conversion of direct propylene epoxidation but also can solve the long-existing Cl loss problem. In particular, Cl-doped rhombic dodecahedral Cu2O with (110) exposing facets exhibited 63% PO selectivity with a 12.0 h-1 turnover frequency at 200 °C, outperforming any other coinage metal-based catalysts under mild conditions. Comprehensive characterization and theoretical calculations revealed that the Cl-decorated Cu(I) facilitated formation of electrophilic oxygen species, thus boosting the production of propylene oxide. This work provides a general strategy to develop catalysts and explore the promoter effect by creating uniform isolated anion doping to activate a nearby metal center by virtue of well-defined nanocrystals.
RESUMO
The negative regulators in the interferon (IFN) signaling pathway inhibit intrahepatic immune response, resulting in suboptimal therapeutic response to IFNα treatment in chronic hepatitis B (CHB) patients. Identifying the key negative factors and elucidating the regulating mechanism are essential for improving anti-HBV (hepatitis B virus) efficacy of IFNα. From the Gene Expression Omnibus (GEO) database, we downloaded and analyzed gene expression profiles of CHB patients with different responses to IFNα (GSE54747), and found that innate immune status was associated with the IFNα-based therapeutic response in CHB patients. Through PCR array, we found higher baseline level of IFN-induced transmembrane protein 2 (IFITM2) mRNA and lower baseline level of IFNα mRNA in peripheral blood mononuclear cells (PBMCs) of CHB patients with suboptimal response to IFNα treatment. Increased IFITM2 protein was also found in the serum of IFNα nonresponsive patients. With further experiments, we found that overexpressing IFITM2 in Huh7 cells suppressed endogenous IFNα synthesis by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), TANK-binding kinase 1 (TBK1), and interferon regulatory factor 3 (IRF3); knocking out IFITM2 enhanced activation of the endogenous IFNα synthesis pathway, exhibiting better inhibition on HBV replication. We also found that IFITM2 protein was shuttled by exosomes to dendritic cells (DCs), the main source of endogenous IFNα. Exosome-mediated transport of IFITM2 inhibited synthesis of endogenous IFNα in DCs whereas the inhibitory effect was abolished when IFITM2 was knocked out. Furthermore, we demonstrated that both palmitoylation inhibitor and mutation on 70/71 sites of IFITM2 protein influenced its incorporation into exosomes. Mutated IFITM2 protein increased the effect of IFNα against HBV. Conclusion: Exosome-mediated transport of IFITM2 to DCs inhibits IFNα pathway activation and blocks anti-HBV efficacy of exogenous IFNα. The findings provide an explanation to the suboptimal response of CHB patients to IFNα treatment.
Assuntos
Células Dendríticas/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/genética , Interferon-alfa/uso terapêutico , Proteínas de Membrana/genética , Células Cultivadas , Técnicas de Cocultura , Estudos de Coortes , Exossomos , Feminino , Regulação da Expressão Gênica , Hepatite B Crônica/diagnóstico , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Proteínas de Membrana/efeitos dos fármacos , Reação em Cadeia da Polimerase/métodos , Valores de Referência , Transdução de Sinais , Resultado do TratamentoRESUMO
Apart from the wide applications in the field of electronic and optoelectronic devices, conjugated molecules have been established as useful functional materials for biological applications. By introducing hydrophilic side chains to conjugated backbones, water-soluble conjugated polymers or oligomers (CPs or COs) inherit the attractive optical and electronic properties from conjugated molecules, while their water solubility ensures interaction with biological substrates such as biomacromolecules, microorganisms, and living cells for further biological applications. Benefiting from high brightness, large extinction coefficients, excellent photostability, low cytotoxicity, stability in bodily fluids, and versatile structural modifications, water-soluble conjugated polymers and oligomers have offered powerful alternatives in a variety of biological applications including biological and chemical sensors, fluorescence imaging, disease diagnostics, and therapy. This Account will focus on our recent advances in design, synthesis, and interdisciplinary biological applications of a series of new water-soluble CP and CO materials, starting with a brief introduction to water-soluble CPs and COs and various methods and strategies developed for the preparation of advanced water-soluble CPs and COs. Since their properties can be tuned by rational design and synthesis at the level of the conjugated repeat unit and versatile pendant groups, CPs and COs provide a diverse toolbox for satisfying interdisciplinary biological applications. The application of water-soluble CPs and COs in the past five years can be broadly categorized into four areas. Specifically, integrating the unique optoelectronic properties of water-soluble CPs and COs with self-assembly and supramolecular strategies, efficacy regulation of antibiotic and anticancer drugs has been achieved, meanwhile drug resistance could be overcome and drug resistant "superbacteria" can be inhibited. For applications regulating cellular functions and biological processes, we introduce CPs and COs with the ability to regulate intracellular oxidative stress, cell-cell communication, cellular proliferation, cell membrane permeability, and quorum sensing of bacteria cells. By covalent linkage of reactive groups upon CPs and COs, these molecules are endowed with abilities like disassembly of amyloid polypeptides, biased distribution in cells, selective imaging of organelles, and distinguished interactions with biomolecules. For photothermal therapy (PTT) applications, photothermal-responsive conjugated polymer materials have been utilized for remote control of gene expression in living cells and in vivo photothermal therapy of cancer. Beyond these applications, we have achieved new interdisciplinary applications of water-soluble CP and CO materials for biological optoelectronic devices including photosynthesis, photocatalysis, and bioenergy. Specific features or properties of water-soluble CPs and COs are leveraged to bring opportunities for each of these applications. These studies open a new frontier for development of new functional conjugated molecule materials and provide better understanding of their interactions with biological systems as well as structure/property relationships. Current limitations confronted by CPs and COs are raised, and developmental direction for the future is proposed.
Assuntos
Técnicas Eletroquímicas , Corantes Fluorescentes/química , Imagem Óptica , Polímeros/química , Água/química , Animais , Doença , Humanos , Substâncias Macromoleculares/química , Fenômenos Ópticos , SolubilidadeRESUMO
BACKGROUND: Pre-operative risk scores are more valuable than post-procedure risk scores because of lacking effective treatment for contrast-induced acute kidney injury (CI-AKI). A number of pre-operative risk scores have been developed, but due to lack of effective external validation, most of them are also difficult to apply accurately in clinical practice. It is necessary to review and validate the published pre-operative risk scores for CI-AKI. MATERIALS AND METHODS: We systematically searched PubMed and EMBASE databases for studies of CI-AKI pre-operative risk scores and assessed their calibration and discriminatory in a cohort of 2669 patients undergoing coronary angiography or percutaneous coronary intervention (PCI) from September 2007 to July 2017. The definitions of CI-AKI may affect the validation results, so three definition were included in this study, CI-AKI broad1 was defined as an increase in serum creatinine (Scr) of 44.2 µmol/L or 25%; CI-AKI broad2, an increase in Scr of 44.2 µmol/L or 50%; and CI-AKI-narrow, an increase in Scr of 44.2 µmol/L. The calibration of the model was assessed with the Hosmer-Lemeshow test and the discriminatory capacity was identified by C-statistic. RESULTS: Of the 8 pre-operative risk scores for CI-AKI identified, 7 were single-center study and only 1 was based on multi-center study. In addition, 7 of the scores were just validated internally and only Chen score was externally validated. In the validation cohort of 2669 patients, the incidence of CI-AKI ranged from 3.0%(Liu) to 16.4%(Chen) for these scores. Furthermore, the incidence of CI-AKI was 6.59% (178) for CI-AKI broad1, 1.44% (39) for CI-AKI broad2, and 0.67% (18) for CI-AKI-narrow. For CI-AKI broads, C-statistics varied from 0.44 to 0.57. For CI-AKI-narrow, the Maioli score had the best discrimination and calibration, what's more, the C-statistics of Maioli, Chen, Liu and Ghani was ≥0.7. CONCLUSION: Most pre-operative risk scores were established based on single-center studies and most of them lacked external validation. For CI-AKI broads, the prediction accuracy of all risk scores was low. The Maioli score had the best discrimination and calibration, when using the CI-AKI-narrow definition.
Assuntos
Injúria Renal Aguda/induzido quimicamente , Meios de Contraste/efeitos adversos , Cuidados Pré-Operatórios , Medição de Risco/métodos , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , China , Estudos de Coortes , Angiografia Coronária , Creatinina/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea , Fatores de RiscoRESUMO
Chronic hepatitis B (CHB) remains the leading cause of liver-related morbidity and mortality across the world. If left untreated, approximately one-third of these patients will progress to severe end-stage liver diseases including liver failure, cirrhosis, and hepatocellular carcinoma (HCC). High level of serum HBV DNA is strongly associated with the development of liver failure, cirrhosis, and HCC. Therefore, antiviral therapy is crucial for the clinical management of CHB. Current antiviral drugs including nucleoside/nucleotide analogues (NAs) and interferon-α (IFN-α) can suppress HBV replication and reduce the progression of liver disease, thus improving the long-term outcomes of CHB patients. This chapter will discuss the standard and optimization antiviral therapies in treatment-naïve and treatment-experienced patients, as well as in the special populations. The up-to-date advances in the development of new anti-HBV agents will be also discussed. With the combination of the current antiviral drugs and the newly developed antiviral agents targeting the different steps of the viral life cycle or the newly developed agents modulating the host immune responses, the ultimate eradication of HBV will be achieved in the future.
Assuntos
Antivirais , Hepatite B Crônica , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , HumanosRESUMO
Commonly used tools to assess the probability of obstructive-coronary artery disease (CAD) were derived based on Caucasian cohorts, with their performance in China is still unknown. Furthermore, most were established based on non-laboratory variables, contributing to the limited predictive ability to some extent. Thus, we developed and internally validated a laboratory-based model with data from a Chinese cohort of 8963 inpatients, with suspected stable chest pain, referred to catheter-based coronary angiography (CAG) from September 2007 to April 2019, and then compared the present model's performance with the four most commonly used prediction tools, Coronary Artery Disease Consortium 1/2 Score (CAD1/2), Duke clinical score (DCS), and Diamond-Forrester score (DF). The final model was developed by random forest method, including 8 predictors derived from 70 variables. Five-fold cross-validation was performed to evaluate the model's prediction accuracy. In the external validation set, the present model showed a superior area under the receiver-operating curve (0.816), followed by DCS (0.66), CAD2 (0.61), CAD1 (0.59) and at last DF (0.58), respectively. Furthermore, the present model correctly classified 74.4% of obstructive-CAD patients as high-risk, and correctly classified more than one third of non-obstructive-CAD patients as low-risk. The present model's net reclassification improvement (NRI) showed a significant positive reclassification over CAD1 (NRI = 0.60, P < 0.001), DF (NRI = 0.59, P < 0.001), CAD2 (NRI = 0.57, P < 0.001), and DCS (NRI = 0.43, P < 0.001). Decision curve analysis demonstrated that the present model provided a larger net benefit compared with CAD1/2, DCS, and DF. In conclusion, the novel model, using 8 laboratory and non-laboratory variables, performed well in risk stratifying patients with suspected chest pain regarding the presence of obstructive-CAD in the present Chinese cohort.