Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Circ Res ; 134(3): 290-306, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38197258

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM. METHODS: Cardiac-specific conditional knockout of Sp1 mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of Sp1 mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ (Myh6 c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM. RESULTS: The cardiac-specific conditional knockout of Sp1 mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, Sp1 knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, Tuft1 was identified as the key target gene of SP1. The hypertrophic phenotypes induced by Sp1 knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs. CONCLUSIONS: Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.


Assuntos
Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Miofibrilas/metabolismo , Miócitos Cardíacos/metabolismo , Cardiomegalia/metabolismo , Fatores de Transcrição/metabolismo , Mamíferos
2.
Basic Res Cardiol ; 119(1): 75-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172251

RESUMO

Mast cells (MCs) are important intermediates between the nervous and immune systems. The cardiac autonomic nervous system (CANS) crucially modulates cardiac electrophysiology and arrhythmogenesis, but whether and how MC-CANS neuroimmune interaction influences arrhythmia remain unclear. Our clinical data showed a close relationship between serum levels of MC markers and CANS activity, and then we use mast cell stabilizers (MCSs) to alter this MC-CANS communication. MCSs, which are well-known anti-allergic agents, could reduce the risk of ventricular arrhythmia (VA) after myocardial infarction (MI). RNA-sequencing (RNA-seq) analysis to investigate the underlying mechanism by which MCSs could affect the left stellate ganglion (LSG), a key therapeutic target for modulating CANS, showed that the IL-6 and γ-aminobutyric acid (GABA)-ergic system may be involved in this process. Our findings demonstrated that MCSs reduce VA risk along with revealing the potential underlying antiarrhythmic mechanisms.


Assuntos
Antialérgicos , Estabilizadores de Mastócitos , Humanos , Neuroimunomodulação , Arritmias Cardíacas/prevenção & controle , Coração
3.
Bioconjug Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954733

RESUMO

Fibroblast activation protein (FAP) has recently gained significant attention as a promising tumor biomarker for both diagnosis and therapeutic applications. A series of radiopharmaceuticals based on fibroblast activation protein inhibitors (FAPIs) have been developed and translated into the clinic. Though some of them such as radiolabeled FAPI-04 probes have achieved favorable in vivo imaging performance, further improvement is still highly desired for obtaining radiopharmaceuticals with a high theranostics potential. In this study, we innovatively designed an FAPI ligand SMIC-3002 by changing the core quinoline motif of FAPI-04 to the quinolinium scaffold. The engineered molecule was further radiolabeled with 68Ga to generate a positron emission tomography (PET) probe, [68Ga]Ga-SMIC-3002, which was then evaluated in vitro and in vivo. [68Ga]Ga-SMIC-3002 demonstrated high in vitro stability, nanomolar affinity for FAP (8 nM for protein, 23 nM for U87MG cells), and specific uptake in FAP-expressing tumors, with a tumor/muscle ratio of 19.1 and a tumor uptake of 1.48 ± 0.03 ID/g% at 0.5 h in U87MG tumor-bearing mice. In summary, the quinolinium scaffold can be successfully used for the development of the FAP-targeted tracer. [68Ga]Ga-SMIC-3002 not only shows high potential for clinical translation but also offers insights into designing a new generation of FAPI tracers.

4.
Opt Express ; 32(9): 15774-15787, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859219

RESUMO

Ellipsometric measurement of transparent samples suffers from substrate backside reflection challenges, including incoherent and partial superposition issues. The recently developed angle-resolved ellipsometry (ARE) can naturally eliminate the backside reflections of substrates with a micro-spot equivalent thickness or thicker; however, for thinner substrates, ARE working with general incoherent backside reflection models shows significant inaccuracy or measurement failure. In this paper, an incoherent partial superposition (IPS) model is proposed to characterize the optical superposition effect between the frontside and uncertain backside reflections from an unknown substrate. IPS introduces a cosine-like correction of the backside reflection, corresponding to the overlapping-area change of backside and frontside reflections along with incident angles. Benefiting from ARE's wide-angle spectral imaging capability, IPS achieves single-shot measurement of thin film thicknesses on transparent substrates of unknown thickness. An ARE system was built and calibrated regarding the linear relationship between the cosine-corrected angular frequencies and substrate thicknesses. Then, commercial ITO films on glasses of different thicknesses ranging from 200 to 1000 µm were measured. Experimental results show that IPS-ARE results in a root-mean-square accuracy error of ∼1 nm in film thickness measurement and provides a ∼77% error reduction from general incoherent backside reflection models.

5.
Exp Dermatol ; 33(6): e15119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881438

RESUMO

This manuscript presents a comprehensive investigation into the role of lactate metabolism-related genes as potential prognostic markers in skin cutaneous melanoma (SKCM). Bulk-transcriptome data from The Cancer Genome Atlas (TCGA) and GSE19234, GSE22153, and GSE65904 cohorts from GEO database were processed and harmonized to mitigate batch effects. Lactate metabolism scores were assigned to individual cells using the 'AUCell' package. Weighted Co-expression Network Analysis (WGCNA) was employed to identify gene modules correlated with lactate metabolism. Machine learning algorithms were applied to construct a prognostic model, and its performance was evaluated in multiple cohorts. Immune correlation, mutation analysis, and enrichment analysis were conducted to further characterize the prognostic model's biological implications. Finally, the function of key gene NDUFS7 was verified by cell experiments. Machine learning resulted in an optimal prognostic model, demonstrating significant prognostic value across various cohorts. In the different cohorts, the high-risk group showed a poor prognosis. Immune analysis indicated differences in immune cell infiltration and checkpoint gene expression between risk groups. Mutation analysis identified genes with high mutation loads in SKCM. Enrichment analysis unveiled enriched pathways and biological processes in high-risk SKCM patients. NDUFS7 was found to be a hub gene in the protein-protein interaction network. After the expression of NDUFS7 was reduced by siRNA knockdown, CCK-8, colony formation, transwell and wound healing tests showed that the activity, proliferation and migration of A375 and WM115 cell lines were significantly decreased. This study offers insights into the prognostic significance of lactate metabolism-related genes in SKCM.


Assuntos
Ácido Láctico , Aprendizado de Máquina , Melanoma , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Melanoma/genética , Melanoma/metabolismo , Prognóstico , Ácido Láctico/metabolismo , Análise de Célula Única , Mutação , Transcriptoma , Melanoma Maligno Cutâneo , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
6.
J Chem Inf Model ; 64(3): 724-736, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38206320

RESUMO

Continuous exploration of the chemical space of molecules to find ligands with high affinity and specificity for specific targets is an important topic in drug discovery. A focus on cyclic compounds, particularly natural compounds with diverse scaffolds, provides important insights into novel molecular structures for drug design. However, the complexity of their ring structures has hindered the applicability of widely accepted methods and software for the systematic identification and classification of cyclic compounds. Herein, we successfully developed a new method, D3Rings, to identify acyclic, monocyclic, spiro ring, fused and bridged ring, and cage ring compounds, as well as macrocyclic compounds. By using D3Rings, we completed the statistics of cyclic compounds in three different databases, e.g., ChEMBL, DrugBank, and COCONUT. The results demonstrated the richness of ring structures in natural products, especially spiro, macrocycles, and fused and bridged rings. Based on this, three deep generative models, namely, VAE, AAE, and CharRNN, were trained and used to construct two data sets similar to DrugBank and COCONUT but 10 times larger than them. The enlarged data sets were then used to explore the molecular chemical space, focusing on complex ring structures, for novel drug discovery and development. Docking experiments with the newly generated COCONUT-like data set against three SARS-CoV-2 target proteins revealed that an expanded compound database improves molecular docking results. Cyclic structures exhibited the best docking scores among the top-ranked docking molecules. These results suggest the importance of exploring the chemical space of structurally novel cyclic compounds and continuous expansion of the library of drug-like compounds to facilitate the discovery of potent ligands with high binding affinity to specific targets. D3Rings is now freely available at http://www.d3pharma.com/D3Rings/.


Assuntos
Proteínas , Software , Simulação de Acoplamento Molecular , Proteínas/química , Desenho de Fármacos , Descoberta de Drogas , Compostos Orgânicos
7.
Ecotoxicol Environ Saf ; 279: 116446, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772138

RESUMO

The discovery of MPTP, an industrial chemical and contaminant of illicit narcotics, which causes parkinsonism in humans, non-human primates and rodents, has led to environmental pollutants exposure being convicted as key candidate in Parkinson's disease (PD) pathogenesis. Though MPTP-induced mitochondrial dysfunction and neuroinflammation are mainly responsible for the causative issue of MPTP neurotoxicity, the underlying mechanism involved remains unclear. Here, we reveal a novel signaling mechanism of CDK5-USP30-MAVS regulating MPTP/MPP+ induced PD. MPP+ (the toxic metabolite of MPTP) treatment not only led to the increased protein levels of USP30 but also to mitophagy inhibition, mitochondrial dysfunction, and MAVS-mediated inflammation in BV2 microglial cells. Both mitophagy stimulation (Urolithin A administration) and USP30 knockdown relieved MAVS-mediated inflammation via restoring mitophagy and mitochondrial function in MPP+-induced cell model. Notably, MPTP/MPP+-induced CDK5 activation regulated USP30 phosphorylation at serine 216 to stabilize USP30. Moreover, CDK5-USP30 pathway promoted MAVS-mediated inflammation in MPTP/MPP+-induced PD model. Inhibition of CDK5 not only had a protective effect on MPP+-induced cell model of PD via suppressing the upregulation of USP30 and the activation of MAVS inflammation pathway in vitro, but also prevented neurodegeneration in vivo and alleviated movement impairment in MPTP mouse model of PD. Overall, our study reveal that CDK5 blocks mitophagy through phosphorylating USP30 and activates MAVS inflammation pathway in MPTP/MPP+-induced PD model, which suggests that CDK5-USP30-MAVS signaling pathway represents a valuable treatment strategy for PD induced by environmental neurotoxic pollutants in relation to MPTP.


Assuntos
Quinase 5 Dependente de Ciclina , Inflamação , Mitofagia , Transdução de Sinais , Animais , Masculino , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Doença de Parkinson
8.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062952

RESUMO

Gastrodin (GAS) is the main chemical component of the traditional Chinese herb Gastrodia elata (called "Tianma" in Chinese), which has been used to treat neurological conditions, including headaches, epilepsy, stroke, and memory loss. To our knowledge, it is unclear whether GAS has a therapeutic effect on Huntington's disease (HD). In the present study, we evaluated the effect of GAS on the degradation of mutant huntingtin protein (mHtt) by using PC12 cells transfected with N-terminal mHtt Q74. We found that 0.1-100 µM GAS had no effect on the survival rate of Q23 and Q74 PC12 cells after 24-48 h of incubation. The ubiquitin-proteasome system (UPS) is the main system that clears misfolded proteins in eukaryotic cells. Mutated Htt significantly upregulated total ubiquitinated protein (Ub) expression, decreased chymotrypsin-like, trypsin-like and caspase-like peptidase activity, and reduced the colocalization of the 20S proteasome with mHtt. GAS (25 µM) attenuated all of the abovementioned pathological changes, and the regulatory effect of GAS on mHtt was found to be abolished by MG132, a proteasome inhibitor. The autophagy-lysosome pathway (ALP) is another system for misfolded protein degradation. Although GAS downregulated the expression of autophagy markers (LC3II and P62), it increased the colocalization of LC3II with lysosomal associated membrane protein 1 (LAMP1), which indicates that ALP was activated. Moreover, GAS prevented mHtt-induced neuronal damage in PC12 cells. GAS has a selective effect on mHtt in Q74 PC12 cells and has no effect on Q23 and proteins encoded by other genes containing long CAGs, such as Rbm33 (10 CAG repeats) and Hcn1 (>30 CAG repeats). Furthermore, oral administration of 100 mg/kg GAS increased grip strength and attenuated mHtt aggregates in B6-hHTT130-N transgenic mice. This is a high dose (100 mg/kg GAS) when compared with experiments on HD mice with other small molecules. We will design more doses to evaluate the dose-response relationship of the inhibition effect of GAS on mHtt in our next study. In summary, GAS can promote the degradation of mHtt by activating the UPS and ALP, making it a potential therapeutic agent for HD.


Assuntos
Autofagia , Álcoois Benzílicos , Glucosídeos , Proteína Huntingtina , Lisossomos , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Animais , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratos , Complexo de Endopeptidases do Proteassoma/metabolismo , Células PC12 , Autofagia/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Ubiquitina/metabolismo , Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Camundongos , Doença de Huntington/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Proteólise/efeitos dos fármacos , Mutação
9.
Angew Chem Int Ed Engl ; 63(24): e202320223, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588224

RESUMO

Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations by intersectional or combined effects such as gating, feedback, shape-memory, or programming. In the absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are not only elastic but also motile, displaying the rare photosalient effect.

10.
Rev Cardiovasc Med ; 24(6): 164, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39077534

RESUMO

Background: The aim of this study was to determine the clinical characteristics and outcome of patients with aortic dissection (AD) who present with an initial manifestation of cerebral infarction. Methods: We retrospectively analyzed patients who were diagnosed with AD and admitted to the emergency department from May 1, 2017 to May 1, 2022. Data was collected for variables including age, sex, clinical manifestation, past medical history, and laboratory test results. Results: Twenty-five patients (2.61%, 22 type A and 3 type B) showed cerebral infarction as the primary presentation for acute AD, while another 933 AD patients (471 type A and 462 type B) who presented with other symptoms served as the control group. Eighteen of the 25 patients (72%) were initially diagnosed with stroke, and the diagnosis of AD was missed. However, patients with a missed diagnosis of AD did not have significantly different mortality to those in whom AD was diagnosed (chi-square test, p > 0.9999). Patients with cerebral infarction as the first presentation had a higher incidence of type A AD than the control patients (p = 0.0002), while their mortality rate was also higher than the control group of AD patients (p < 0.0001). Furthermore, patients with cerebral infarction as the first presentation were more likely to have multiple organ dysfunction. Conclusions: AD with an initial presentation of cerebral infarction is a rare condition with high mortality. However, the initial failure to diagnose AD does not further increase patient mortality.

11.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139662

RESUMO

Parametric splines are popular tools for precision optical metrology of complex freeform surfaces. However, as a promising topologically unconstrained solution, existing T-spline fitting techniques, such as improved global fitting, local fitting, and split-connect algorithms, still suffer the problems of low computational efficiency, especially in the case of large data scales and high accuracy requirements. This paper proposes a speed-improved algorithm for fast, large-scale freeform point cloud fitting by stitching locally fitted T-splines through three steps of localized operations. Experiments show that the proposed algorithm produces a three-to-eightfold efficiency improvement from the global and local fitting algorithms, and a two-to-fourfold improvement from the latest split-connect algorithm, in high-accuracy and large-scale fitting scenarios. A classical Lena image study showed that the algorithm is at least twice as fast as the split-connect algorithm using fewer than 80% control points of the latter.

12.
Sci Rep ; 14(1): 13687, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871790

RESUMO

When high-speed trains (HST) run in enclosed spaces such as long tunnels, the thermal accumulation of their suspension devices is continuous and cannot be effectively dissipated. In addition, previous experiments or simulations for the heat dissipation of HST in tunnel spaces did not consider the impact of sand. To clarify the impact of HWS-LT on the heat accumulation of HST equipment cabin, this study used the CFD method to numerically simulate the impact of different wind-sand flow concentrations or no-sand wind on the cooling of equipment in the long tunnel space. Firstly, the sand particles in the wind-sand flow gather at the tunnel entrance and enter the equipment cabin with the train as it enters the tunnel. This boundary condition is more in line with actual engineering situations. Secondly, both flows show asymmetric intrusion into the cabin due to the asymmetrical tunnel arrangement, but the sand particles in the wind-sand flow are affected by the vortices and tunnel walls, resulting in more asymmetric flow and some particles being trapped in the grids or filters, leading to outflow ρQ < inflow ρQ. Under the wind-sand flow condition, the temperature of some equipment surfaces shows more significant increases than under the no-sand wind. Finally, contrary to popular perception, the wind-sand flow carrying sand particles can dissipate heat more effectively than no-sand wind, and the higher the volume fraction φ within a certain concentration range, the better the heat dissipation effect. This is because the wind-sand flow has a higher specific heat capacity, which can remove some heat from the contact point between the sand particles and the equipment wall upon contact. The higher sand particle concentration increases the contact frequency and contact area between the sand particles and the equipment wall, and the heat transfer pathway and heat dissipation efficiency are improved.

13.
Front Physiol ; 15: 1324924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645693

RESUMO

Purpose: The effects of the combination of strength training and acupuncture on chronic ankle instability have not been studied. This study examined effects of strength training combined with acupuncture on balance ability, ankle motion perception, and muscle strength in chronic ankle instability among college students. Methods: Forty-six chronic ankle instability college students were randomly categorized into the experimental group (n = 24, strength training + acupuncture) and the control group (n = 22, strength training) for an 8-week intervention. Results: For the results at 8 weeks, compared with the baseline, in the experimental group, the chronic Ankle Instability Tool (CAIT) score, ankle dorsiflexion, plantar flex, eversion peak torque (60°/s), and plantar flex peak torque (180°/s) increased by 13.7%, 39.4%, 13.7%, 14.2%, and 12.3%, respectively. Dorsiflexion, plantar flexion, inversion, and eversion kinesthetic sensation test angles decreased by 17.4%, 20.6%, 15.0%, and 17.2%, respectively. Anterior-posterior and medial-lateral displacement, and anterior-posterior and medial-lateral velocity decreased by 28.9%, 31.6%, 33.3%, and 12.4%, respectively. Anterior-posterior and medial-lateral displacement, and anterior-posterior and medial-lateral mean velocity decreased by 28.9%, 31.6%, 33.3%, and 12.4%, respectively. In the control group, the Cumberland Ankle Instability Tool score and the ankle dorsiflexion peak torque (60°/s) increased by 13.8% and 17.9%, respectively. The inversion kinesthetic sensation test angle decreased by 15.2%, whereas anterior-posterior and medial-lateral displacement, and anterior-posterior and medial-lateral mean velocity decreased by 17.1%, 29.4%, 12.3%, and 16.8%, respectively. 2) For the comparison between the groups after 8 weeks, the values of ankle dorsiflexion and plantar flex peak torque (60°/s) in the experimental group were greater than those in the control group. The values of ankle plantar flex kinesthetic sensation test angle, the anterior-posterior displacement, and anterior-posterior mean velocity in the experimental group were lower than those in the control group. Conclusion: Acupuncture treatment in conjunction with muscle strength training can further improve the balance ability of anterior-posterior, ankle dorsiflexion, and plantar flex strength and plantar flex motion perception in chronic ankle instability participants.

14.
Cytotechnology ; 76(1): 97-111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304623

RESUMO

Blocking the CXCL12/CXCR4 axis can alter the biological functions of leukaemia cells. We hypothesise that interleukin (IL)-8 and IL-6 play an important role in this process. To test this hypothesis, we established a co-culture model of leukaemia cells and bone marrow stromal cells. Treatment of cells with AMD3100, a CXCR4 antagonist, and G-CSF blocked the CXCL12/CXCR4 axis, inducing biological changes in the leukaemia cells and altering IL-8 and IL-6 levels. Subsequently, after stimulating the CXCL12/CXCR4 axis, specific pathway blockers were employed to assess the role of four candidate signalling pathways in this process. ELISA results confirmed that MG-132 (10 µm) inhibits IL-8 expression and that the NF-κB signalling pathway contributes to this effect. Moreover, treatment with Perifosine, an AKT inhibitor, inhibited IL-6 expression. In addition, changes in the NF-κB signalling pathway inhibited IL-8 expression. Treatment with SP600125, a Jun N-terminal kinase inhibitor, and Perifosine also inhibited IL-8 expression; however, this effect occurred later. IL-6 expression was also lower in the Perifosine group; hence, inhibiting the PI3K/AKT signalling pathway can reduce IL-6 expression. This process requires the participation of multiple signalling pathways to regulate IL-8 and IL-6 expression. Therefore, the associated mechanism is likely to be highly intricate, with potential cross-effects that may impact leukaemia pathogenesis. IL-6 and IL-8 are physiologically regulated by the CXCL12/CXCR4 axis, while the NF-κB and JNK/AP-1 pathways are required for IL-8 expression in T-cell acute lymphoblastic leukaemia. Accordingly, by upregulating IL-8, the bone marrow microenvironment and CXCL12/CXCR4 axis may contribute to T-cell acute lymphoblastic leukaemia pathogenesis.

15.
Drug Discov Today ; 29(2): 103865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154757

RESUMO

PROteolysis TArgeting Chimeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are intractable to classic inhibitors. Heterobifunctional in nature, PROTACs are small molecules that offer a unique mechanism of protein degradation by hijacking the ubiquitin-mediated protein degradation pathway, known as the ubiquitin-proteasome system. Herein, we present an analysis on the structural characteristics of this novel chemical modality. Furthermore, we review and discuss the formulation opportunities to overcome the oral delivery challenges of PROTACs in drug discovery.


Assuntos
Quimera de Direcionamento de Proteólise , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise , Ubiquitinas/metabolismo
16.
Int J Biol Macromol ; 262(Pt 1): 130017, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336333

RESUMO

Sustainably sourced lignin presents great potential as a green feedstock for fertilizer production but commercial fulfillment is still challenging owing to the mediocre fertilizer activity of lignin. To address this issue, an effective strategy to enhance the activity of lignin-based potassium fertilizer (LPF) is proposed through lignin fractionation. Three lignin fractions subdivided from enzymatic hydrolysis lignin (EHL) were adopted as the feedstock for LPF preparation, and the effect of lignin fractionation on wheat seed germination and seedling growth was investigated. Compared with the potassium fertilizer from unfractionated lignin, LPF-F1 showed significantly improved effects on promoting seed germination and seedling growth, which can be attributed to the high potassium content resulted from its abundant phenolic hydroxyl and carboxyl contents. Under the optimal treatment concentration (100 mg/L), LPF-F1 showed comparable promotion effect to commercial fulvic acid potassium on wheat seedling growth, suggesting the potential of LPF-F1 as commercial potassium fertilizer. Overall, this work reveals that lignin heterogeneity presents critical effects on the wheat seed germination and seedling growth of LPF, and the fertilizer activity of LPF can be substantially improved using fractionated lignin with low molecular weight as the raw material.


Assuntos
Lignina , Plântula , Lignina/farmacologia , Germinação , Triticum , Fertilizantes , Hidrólise , Sementes
17.
Gene ; 915: 148410, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527674

RESUMO

OBJECTIVE: Atherosclerosis (AS) is the primary cause of deadly cardio-cerebro vascular diseases globally. This study aims to explore the key differentially expressed genes (DEGs), potentially serving as predictive biomarkers for AS. METHODS: Microarray datasets were retrieved from the GEO database for DEGs and DE-miRNAs identification. Then biological function of DEGs were elucidated based on gene ontology (GO) and KEGG pathway enrichment analysis. The protein-protein interaction (PPI) network and DEGs-DE-miRNAs network were constructed, with emphasis on hub DEGs selection and their interconnections. Additionally, receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic precision of hub DEGs for AS. More importantly, an AS Syrian Golden hamster model was established to validate the expression levels of hub DEGs in AS. RESULTS: A total of 203 DEGs and 10 DE-miRNAs were screened, with six genes were chosen as hub DEGs. These DEGs were significantly enriched in AS-related biological processes and pathways, such as immune and inflammatory response, cellular response to IL-1 and TNF, positive regulation of angiogenesis, Type I diabetes mellitus, Cytokine-cytokine receptor interaction, TLR signaling pathway. Also, these DEGs and DE-miRNAs formed a closely-interacted DE-miRNAs - DEGs - KEGG pathway network. Besides, hub DEGs presented promising diagnostic potential for AS (AUC: 0.781 âˆ¼ 0.887). In addition, the protein expression levels of TNF-α, CXCL8, CCL4, IL-1ß, CCL3 and CCR8 were significantly increased in AS group Syrian Golden hamsters. CONCLUSION: The identified candidate genes TNF, CXCL8, CCL4, IL1B, CCL3 and CCR8 may have the potential to serve as prognostic biomarker in diagnosing AS.


Assuntos
Aterosclerose , Biomarcadores , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Mapas de Interação de Proteínas/genética , Biomarcadores/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Mesocricetus , Ontologia Genética , MicroRNAs/genética , Masculino , Cricetinae , Regulação da Expressão Gênica
18.
J Med Chem ; 67(6): 4782-4792, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38502551

RESUMO

Halogen bonds (XBs) are essential noncovalent interactions in molecular recognition and drug design. Current studies on XBs in drug design mainly focus on the interactions between halogenated ligands and target proteins, lacking a systematic study of naturally existing and artificially prepared halogenated residue XBs (hr_XBs) and their characteristics. Here, we conducted a computational study on the potential hr_XBs in proteins/peptides using database searching, quantum mechanics calculations, and molecular dynamics simulations. XBs at the protein-peptide interaction interfaces are found to enhance their binding affinity. Additionally, the formation of intramolecular XBs (intra_XBs) within proteins may significantly contribute to the structural stability of structurally flexible proteins while having a minor impact on proteins with inherently high structural rigidity. Impressively, introducing halogens without the formation of intra_XBs may lead to a decrease in the protein structural stability. This study enriches our understanding of the roles and effects of halogenated residue XBs in biological systems.


Assuntos
Halogênios , Proteínas , Halogênios/química , Proteínas/metabolismo , Peptídeos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica
19.
Phytomedicine ; 126: 155254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342016

RESUMO

BACKGROUND: The gut-brain axis (GBA) plays a central role in cerebral ischaemia-reperfusion injury (CIRI). Rhubarb, known for its purgative properties, has demonstrated protective effects against CIRI. However, it remains unclear whether this protective effect is achieved through the regulation of the GBA. AIM: This study aims to investigate the mechanism by which rhubarb extract improves CIRI by modulating the GBA pathway. METHODS: We identified the active components of rhubarb extract using LC-MS/MS. The model of middle cerebral artery occlusion (MCAO) was established to evaluate the effect of rhubarb extract. We conducted 16S rDNA sequencing and untargeted metabolomics to analyze intestinal contents. Additionally, we employed HE staining, TUNEL staining, western blot, and ELISA to assess intestinal barrier integrity. We measured the levels of inflammatory cytokines in serum via ELISA. We also examined blood-brain barrier (BBB) integrity using Evans blue (EB) penetration, transmission electron microscopy (TEM), western blot, and ELISA. Neurological function scores and TTC staining were utilized to evaluate neurological outcomes. RESULTS: We identified twenty-six active components in rhubarb. Rhubarb extract enhanced α-diversity, reduced the abundance of Enterobacteriaceae, and partially rectified metabolic disorders in CIRI rats. It also ameliorated pathological changes, increased the expressions of ZO-1, Occludin, and Claudin 1 in the colon, and reduced levels of LPS and d-lac in serum. Furthermore, it lowered the levels of IL-1ß, IL-6, IL-10, IL-17, and TNF-α in serum. Rhubarb extract mitigated BBB dysfunction, as evidenced by reduced EB penetration and improved hippocampal microstructure. It upregulated the expressions of ZO-1, Occludin, Claudin 1, while downregulating the expressions of TLR4, MyD88, and NF-κB. Similarly, rhubarb extract decreased the levels of IL-1ß, IL-6, and TNF-α in the hippocampus. Ultimately, it reduced neurological function scores and cerebral infarct volume. CONCLUSION: Rhubarb effectively treats CIRI, potentially by inhibiting harmful bacteria, correcting metabolic disorders, repairing intestinal barrier function, alleviating BBB dysfunction, and ultimately improving neurological outcomes.


Assuntos
Isquemia Encefálica , Doenças Metabólicas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Rheum , Ratos , Animais , Neuroproteção , Rheum/metabolismo , Ocludina/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa/genética , Eixo Encéfalo-Intestino , Cromatografia Líquida , Claudina-1 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Espectrometria de Massas em Tandem , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Azul Evans/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Doenças Metabólicas/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico
20.
Exp Ther Med ; 27(6): 266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756909

RESUMO

Gestational hypertension (GH) is a common disorder during pregnancy that can cause adverse pregnancy outcomes. In the present study, magnesium sulfate (MgSO4) combined with labetalol was used for clinical treatment. Randomized controlled trial was conducted in 100 patients with GH, documented in the Department of Obstetrics and Gynecology (Taicang TCM Hospital) grouped into the experimental (Expt) and control (Ctrl) groups (n=50 cases/group). The Ctrl group was treated with MgSO4, whereas the Expt group was treated with MgSO4 + labetalol. The systolic blood pressure (SBP) and diastolic blood pressure (DBP) in the Expt group were not significantly different from those in the Ctrl group (P>0.05). By contrast, the SBP and DBP were significantly lower after treatment than those before treatment in both groups (P<0.05). Whole blood viscosity, plasma viscosity and hematocrit were significantly lower in the Expt group compared with those in the Ctrl group after treatment (P<0.05). High mobility group box-1 protein, homocysteine and serum cystatin C levels in the Expt group were also markedly lower than those in the Ctrl group after treatment (P<0.05). In the Expt group, the rate of spontaneous vaginal delivery was much higher, whereas the rates of cesarean section and postpartum hemorrhage were markedly lower than those in the Ctrl group (P<0.05). The occurrence of fetal intrauterine distress, placental abruption, neonatal asphyxia, premature birth and neonatal death were also significantly lower in the Expt group than those in the Ctrl group (P<0.05). In conclusion, MgSO4 + labetalol could improve inflammatory stress and the hemodynamics of patients with GH, and may have a marked antihypertensive effect. Thus, it may improve pregnancy outcome and reduce perinatal complications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa