Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(33): e2400906, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593313

RESUMO

Marangoni actuators that are propelled by surface tension gradients hold significant potential in small-scale swimming robots. Nevertheless, the release of "fuel" for conventional chemical Marangoni actuators is not easily controllable, and the single swimming function also limits application areas. Constructing controllable Marangoni robots with multifunctions is still a huge challenge. Herein, inspired by water striders, electricity-driven strategies are proposed for a multifunctional swimming Marangoni robot (MSMR), which is fabricated by super-aligned carbon nanotube (SACNT) and polyimide (PI) composite. The MSMR consists of a Marangoni actuator and air-ambient actuators. Owing to the temperature gradient generated by the electrical stimulation on the water surface, the Marangoni actuators can swim controllably with linear, turning, and rotary motions, mimicking the walking motion of water striders. In addition, the Marangoni actuators can also be driven by light. Importantly, the air-ambient actuators fabricated by SACNT/PI bilayer structures demonstrate the function of grasping objects on the water surface when electrically Joule-heated, mimicking the predation behavior of water striders. With the synergistic effect of the Marangoni actuator and air-ambient actuators, the MSMR can navigate mazes with tunnels and grasp objects. This research will provide a new inspiration for smart actuators and swimming robots.

2.
Adv Sci (Weinh) ; 11(22): e2309846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531061

RESUMO

Multi-functional actuation systems involve the mechanical integration of multiple actuation and sensor devices with external energy sources. The intricate combination makes it difficult to meet the requirements of lightweight. Hence, polypyrrole@graphene-bacterial cellulose (PPy@G-BC) films are proposed to construct multi-responsive and bilayer actuators integrated with multi-mode self-powered sensing function. The PPy@G-BC film not only exhibits good photo-thermoelectric (PTE) properties but also possesses good hydrophilicity and high Young's modulus. Thus, the PPy@G-BC films are used as active layers in multi-responsive bilayer actuators integrated with self-powered sensing functions. Here, two types of multi-functional actuators integrated with self-powered sensing functions is designed. One is a light-driven actuator that realizes the self-powered temperature sensing function through the PTE effect. Assisted by a machine learning algorithm, the self-powered bionic hand can realize intelligent gesture recognition with an accuracy rate of 96.8%. The other is humidity-driven actuators integrated a zinc-air battery, which can realize self-powered humidity sensing. Based on the above advantages, these two multi-functional actuators are ingeniously integrated into a single device, which can simultaneously perform self-powered temperature/humidity sensing while grasping objects. The highly integrated design enables the efficient utilization of environmental energy sources and complementary synergistic monitoring of multiple physical properties without increasing system complexity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa