Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Glob Chang Biol ; 29(17): 5044-5061, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37427534

RESUMO

Microbes play an important role in aquatic carbon cycling but we have a limited understanding of their functional responses to changes in temperature across large geographic areas. Here, we explored how microbial communities utilized different carbon substrates and the underlying ecological mechanisms along a space-for-time substitution temperature gradient of future climate change. The gradient included 47 lakes from five major lake regions in China spanning a difference of nearly 15°C in mean annual temperatures (MAT). Our results indicated that lakes from warmer regions generally had lower values of variables related to carbon concentrations and greater carbon utilization than those from colder regions. The greater utilization of carbon substrates under higher temperatures could be attributed to changes in bacterial community composition, with a greater abundance of Cyanobacteria and Actinobacteriota and less Proteobacteria in warmer lake regions. We also found that the core species in microbial networks changed with increasing temperature, from Hydrogenophaga and Rhodobacteraceae, which inhibited the utilization of amino acids and carbohydrates, to the CL500-29-marine-group, which promoted the utilization of all almost carbon substrates. Overall, our findings suggest that temperature can mediate aquatic carbon utilization by changing the interactions between bacteria and individual carbon substrates, and the discovery of core species that affect carbon utilization provides insight into potential carbon sequestration within inland water bodies under future climate warming.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Temperatura , Cianobactérias/metabolismo , Temperatura Baixa , Carbono/metabolismo
2.
J Environ Manage ; 344: 118496, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384996

RESUMO

The effects of raw attapulgite clay and thermally modified attapulgite clay on the growth status of submerged plant Vallisneria Spiralis (V. spiralis) and the microenvironment of sediment were first explored. The results demonstrated that the attapulgite could effectively promote the development of V. spiralis and improve plant stress resistance by enhancing the activity of antioxidant enzymes. The 10% addition of attapulgite clay increased the biomass of V. spiralis by 27%∼174%, and the promoted rate of raw attapulgite clay was 2∼5 times of modified attapulgite clay. The attapulgite increased redox potential in sediment (P < 0.05) and provided proper niches for organism propagation, further promoting the degradation of organic matter and nutrient metabolism in sediment. The value of Shannon, Chao, and Ace was 9.98, 4865.15, 5029.08 in the 10% modified attapulgite group, and 10.12, 4856.85, 4947.78 in the 20% raw attapulgite group, respectively, indicating that the attapulgite could increase the microbial diversity and abundance in sediment. Additionally, the nutrient elements, such as Ca, Na, S, Mg, K, Zn, and Mo, that dissolved from attapulgite may also promote the V. spiralis growth. This study provided an environment-friendly approach to facilitating submerged macrophyte restoration in the eutrophic lake ecosystem.


Assuntos
Ecossistema , Hydrocharitaceae , Argila , Biomassa , Compostos de Magnésio , Hydrocharitaceae/metabolismo , Lagos
3.
J Environ Manage ; 332: 117373, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708598

RESUMO

Oil-based drill cutting ash (OBDCA) was treated by alkali melting-hydrothermal method and used as novel adsorbent (AM-HT-OBDCA) for the recovery of phosphorus (P) in water body. The experiment parameter for preparation of AM-HT-OBDCA was optimized, including alkali melting ratio (MOBDCA: MNaOH), alkali melting temperature and hydrothermal temperature. The adsorption process of phosphorus on AM-HT-OBDCA was fit well with the pseudo-second-order model and the Langmuir model. The calculated theoretic adsorption capacity of phosphorus on AM-HT-OBDCA was 62.9 mg/g. The adsorption behavior was spontaneous and endothermic. The effect of pH value and interfering ions on the adsorption of phosphorus in AM-HT-OBDCA was investigated. The main existing form of adsorbed phosphorus on AM-HT-OBDCA was sodium hydroxide extraction form phosphorus (NaOH-P), including iron form phosphorus (Fe-P) and aluminum form phosphorus (Al-P). Precipitation and ligand exchange were the main mechanisms of phosphorus adsorption on AM-HT-OBDCA. The AM-HT-OBDCA used for phosphorus adsorption (AM-HT-OBDCA-P) could be further utilized as fertilizer to promote plant growth. The results of this study provide fundamental data and evaluation support for resource utilization of OBDCA. These results will also provide a reference for the adsorption and recovery utilization of phosphorus using solid waste-based adsorbent.


Assuntos
Álcalis , Poluentes Químicos da Água , Hidróxido de Sódio , Adsorção , Fósforo , Ferro , Poluentes Químicos da Água/análise , Cinética
4.
Ecotoxicol Environ Saf ; 232: 113287, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149407

RESUMO

6-benzylaminopurine (6-BA), classified as a "plant hormone", is an important ingredient in production of "toxic bean sprouts". Although there is no direct evidence of adverse effects, its hazardous effects have received some attention and aroused furious debate between proponents and environmental regulators. In this study, potential adverse effects of 6-BA were investigated by exposing zebrafish in vivo to 0.2 - 25 mg 6-BA/L. Results indicated that, when exposure was limited to early-life stage (4-36 hpf), 20 mg 6-BA/L caused early hatching, abnormal spontaneous movement, and precocious hyperactivity in zebrafish embryos/larvae. While under a continuous exposure regime, 6-BA at 0.2 mg/L was able to cause hyperactive locomotion and transcription of genes related to neurogenesis (gnrh3 and nestin) and endocrine systems (cyp19a and fshb) in 5 dpf larvae. Quantification by use of LC/MS indicated bioaccumulation of 6-BA in zebrafish increased when exposed to 0.2 or 20 mg 6-BA/L. These results suggested that 6-BA could accumulate in aquatic organisms and disrupt neuro-endocrine systems. Accordingly, exposure to 0.2 mg 6-BA/L increased production of estradiol (E2) and consequently E2/T ratio in zebrafish larvae, which directly indicated 6-BA is estrogenic. In silico simulations demonstrated potential for binding of 6-BA to estrogen receptor alpha (ERa) and cytochrome P450 aromatase (CYP19A). Therefore, induction of estrogenic effects, via potential interactions with hormone receptors or disturbance of downstream transcription signaling, was possible mechanism underlying the toxicity of 6-BA. Taken together, these findings demonstrate endocrine disrupting properties of 6-BA, which suggest concerns about risks posed to endocrine systems.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Compostos de Benzil/toxicidade , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/toxicidade , Sistema Endócrino/metabolismo , Purinas , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
5.
Ecotoxicol Environ Saf ; 247: 114236, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326555

RESUMO

Excessive proliferation of filamentous green algae (FGA) is a new ecological problem in lake systems that have not yet reached a steady state. However, knowledge on how FGA decomposition affects the physical and chemical properties of microhabitats, and whether FGA decomposition stimulates the growth of harmful microalgae in the same niche and promotes the formation of harmful algal blooms remains unclear. In this study, we investigated the decomposing effect of a typical FGA, Cladophora oligoclora, on the density and photosynthetic capacity of Microcystis aeruginosa. C. oligoclora decomposition was characterized under different conditions, namely, unshaded and aerobic, unshaded and anoxic, shaded and anaerobic, and shaded and anoxic, which represented different environmental states in the sedimentation process of decaying C. oligoclora mats from water surface to sediment. The shaded and anaerobic treatment significantly decreased the dissolved oxygen and pH of the culture medium by 66.48 % and 7.21 %, respectively, whereas the conductivity and total organic carbon increased by 71.17 and 70.19 times compared with the control group, respectively. This indicated that the decomposing C. oligoclora deposited at the bottom under dark and anaerobic conditions in natural waters had the greatest impact on the lake environment. Further, the cell density of M. aeruginosa was higher than that in the control group with low concentration (10 % of decomposing solution), whereas the cell density and photosynthetic activity decreased significantly at high concentration of the decomposing solution. Fatty acids and phenolic acids were identified as the main Cyanobacteria-inhibiting active substances in the organic acid components of the decomposing solution. Furthermore, phenol, 4-methyl- and indole compounds were active organic lipophilic compounds in the residue and solution of decomposing C. oligoclora were difficult to degrade. Our findings will be valuable for understanding the succession relationships between FGA and cyanobacteria, which have the same niche in lake ecosystems.


Assuntos
Clorófitas , Microcystis , Ecossistema , Proliferação Nociva de Algas , Lagos
6.
Ecotoxicol Environ Saf ; 201: 110752, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32474208

RESUMO

Plant is an important part of constructed wetland (CW), while, its potential effect on nitrogen cycling is complicated. Herein, integrated vertical-flow constructed wetland (IVCW) in pilot-scale planted with Arundo donax (Planted System, PS) was constructed to treat swine wastewater. The removal performance of nitrogen in PS, effects of plant on the microbial community structure and nitrogen related function genes were revealed. Results showed that, Arundo donax planting enhanced the removal rate of TN, compared to unplanted IVCWs, the absolute abundance of Pseudomonas, Acinetobacter and Bacillus in PS was significantly increased, as well as the absolute abundance of functional gene (amoA, nxrA, nirK, nirS and nosZ). The denitrification process was mainly occurred in down-flow cell of PS with significantly higher abundant of nirK and nosZ (P < 0.05). These findings suggested that Arundo donax planting in IVCWs with zeolite as substrate promoted the growth of denitrifying microorganisms under higher pollutant load. In addition, the increased abundant of nosZ and the ratio of nosZ/∑nir indicating a lower genetic potential for N2O release. Our research provides new insight into the potential application of plant on the purification of swine wastewater.


Assuntos
Desnitrificação , Poaceae/metabolismo , Águas Residuárias/química , Purificação da Água/métodos , Áreas Alagadas , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Desnitrificação/genética , Nitrogênio/análise , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Suínos , Águas Residuárias/microbiologia , Zeolitas/metabolismo
7.
Microb Ecol ; 76(3): 625-636, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29502133

RESUMO

Submerged vegetation biomass fluctuation usually occurs during the preliminary stage of vegetation restoration in shallow lakes, which impacts the final status and duration for achieving a macrophyte-dominant state. This study uncovered the sediment N characteristics and the sediment bacterial community and their predicted functions during the preliminary stage of vegetation recovery in the West Lake, a typical subtropical degenerated shallow lake in China. Results showed increased amounts of sediment TN and NH4-N, reaching 3425.76 and 345.5 mg kg-1, respectively, when the vegetation biomass decreased from its maximum to its minimum. The maximum concentration of sediment NH4-N reached 508.60 mg kg-1 with the decline in vegetation, which might restrict further growth of the submerged macrophytes. The bacterial community structure during the high macrophyte biomass (HMB) period was distinct from that observed during the low macrophyte biomass (LMB) period. Specific taxa such as the phyla Chloroflexi and Acidobacteria and the genus Anaerolineaceae that are related to organic carbon degradation were significantly higher during the LMB period. Potential denitrifiers, such as Lactococcus and Bacillus genera decreased during the LMB period. Accumulation of sediment ammonia could be attributed to the enhanced production by assimilatory nitrate reduction, organic N degradation, and/or the decreased consumption by nitrification. Our findings highlight that the unstable preliminary stage of vegetation restoration brings drastic fluctuation of sediment N loading, of which NH4-N accumulation caused by bacterial communities prevents further growth of the submerged macrophytes. Therefore, extra management measures for the vegetation recovery areas should be taken to avoid excess NH4-N accumulation in sediments.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Magnoliopsida/crescimento & desenvolvimento , Nitrogênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , China , Ecossistema , Sedimentos Geológicos/análise , Lagos/análise , Nitrogênio/análise , Filogenia
8.
Ecotoxicol Environ Saf ; 157: 81-88, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29609107

RESUMO

Excessive proliferation of filamentous green algae (FGA) has been considered an important factor resulting in the poor growth or even decline of submerged macrophytes. However, there is a lack of detailed information regarding the effect of decaying FGA on submerged macrophytes. This study aimed to investigate whether the decomposing liquid from Cladophora oligoclona negatively affects Hydrilla verticillata turion germination and seedling growth. The results showed that the highest concentrations of decomposing liquid treatments inhibited the turion germination rate, which was the lowest than other treatments, at only 84%. The chlorophyll a fluorescence (JIP test) and physiological indicators (chlorophyll a content, soluble sugars, Ca2+/Mg2+-ATPase and PAL activity) were also measured. The chlorophyll a content in the highest concentration (40% of original decomposing liquid) treatment group decreased by 43.53% than that of the control; however, soluble sugars, Ca2+/Mg2+-ATPase, and PAL activity increased by 172.46%, 271.19%, and 26.43% respectively. The overall results indicated that FGA decay has a considerable effect on submerged macrophyte turion germination and seedling growth, which could inhibit their expansion and reproduction. This study emphasized the need to focus on effects of FGA decomposition on the early growth stages of submerged macrophytes and offered technological guidance for submerged vegetation restoration in lakes and shallow waters.


Assuntos
Clorófitas/fisiologia , Hydrocharitaceae/crescimento & desenvolvimento , Clorofila/análise , Clorofila A , Germinação , Hydrocharitaceae/química , Hydrocharitaceae/metabolismo , Plântula/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
9.
J Environ Sci (China) ; 70: 54-62, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30037411

RESUMO

To find suitable wetland plants for constructed wetland-microbial fuel cells (CW-MFCs), four commonly used wetland plants, including Canna indica, Cyperus alternifolius L., Acorus calamus, and Arundo donax, were investigated for their electrogenic performance and physiological changes during non-growing seasons. The maximum power output of 12.82mW/m2 was achieved in the A. donax CW-MFC only when root exudates were being released. The results also showed that use of an additional carbon source could remarkably improve the performance of electricity generation in the C. indica and A. donax CW-MFCs at relatively low temperatures (2-15°C). However, A. calamus withered before the end of the experiment, whereas the other three plants survived the winter safely, although their relative growth rate values and the maximum quantum yield of PSII (Fv/Fm) significantly declined, and free proline and malondialdehyde significantly accumulated in their leaves. On the basis of correlation analysis, temperature had a greater effect on plant physiology than voltage. The results offer a valuable reference for plant selection for CW-MFCs.


Assuntos
Biodegradação Ambiental , Fontes de Energia Bioelétrica , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Eletricidade , Águas Residuárias
10.
Microb Ecol ; 74(2): 278-288, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28255685

RESUMO

Submerged macrophytes play an important role in aquatic ecosystems, which has led to an increase in studies on vegetation recovery in polluted lakes from which submerged macrophytes have disappeared. The comparison of microbial communities in sediment cloned with planted and naturally growing submerged macrophytes is an interesting but rarely studied topic. In this investigation, Maojiabu and Xilihu, two adjacent sublakes of West Lake (Hangzhou, China), were selected as aquatic areas with planted and naturally growing macrophytes, respectively. Sediment samples from sites with/without Vallisneria natans were collected from both sublakes. The results showed that sediment total nitrogen and organic matter were significantly lower in the plant-covered sites than that in the non-plant sites in Maojiabu. Additionally, the sediment microbial community characterized by 16S ribosomal RNA (rRNA) sequencing differed more significantly for Maojiabu than for Xilihu. The relative abundances of microbes involved in C, N, and S elemental cycling were significantly higher in the sediments with plants than in those without. Results from both fatty acid methyl ester analysis and 16S rRNA sequencing indicated that vegetation significantly influenced the sulfate-reducing bacteria (SRB). Thus, the gene copies and composition of SRB were explored further. The relative gene abundance of SRB was 66% higher with natural vegetation colonization but was not influenced by artificial colonization. An increase in dominant SRB members from the families Syntrophobacteraceae and Thermodesulfovibrionaceae contributed to the increase of total SRB. Thus, macrophyte planting influences sediment nutrient levels and microbial community more than natural growth does, whereas the latter is more beneficial to sediment SRB.


Assuntos
Ecossistema , Sedimentos Geológicos/microbiologia , Hydrocharitaceae/crescimento & desenvolvimento , Lagos/microbiologia , Bactérias Redutoras de Enxofre/classificação , China , Recuperação e Remediação Ambiental , RNA Ribossômico 16S/genética
11.
Ecotoxicol Environ Saf ; 145: 266-273, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28753419

RESUMO

Aluminate is generally used as a flocculant in water and wastewater treatment processes, but the residual aluminum (Al) may have toxic effects on aquatic organisms when the concentration accumulates beyond a threshold level. The in situ and laboratory tests were conducted to evaluate the impact of residual Al on submerged macrophytes in West Lake, Hangzhou, China, which receives Al flocculant-purified water diverted from the Qiantang River. The responses of Vallisneria natans and Hydrilla verticillata were investigated based on their morphological and physiological parameters in pot culture and aquarium simulation experiments. In the pot culture experiments, the biomass, seedling number, plant height, stolon number, stolon length, and root weight were significantly higher at a site located 150m from the inlet compared with those at a site located 15m from the inlet (P < 0.05), thereby indicating that the residual Al significantly inhibited the morphological development of V. natans and H. verticillata. The variations in the chlorophyll-a, protein, and malondialdehyde contents of the two species in both the pot culture and aquarium simulation experiments also demonstrated that the two submerged macrophytes were stressed by residual Al. V. natans and H. verticillata accumulated 0.052-0.227mg of Al per gram of plant biomass (fresh weight, mg/g FW) and 0.045-0.205mg Al/g FW in the in situ experiments, respectively, where the amounts of Al were significantly higher in the plants in the treatment aquaria during the laboratory experiments than those in the controls. These results may have important implications for the restoration of submerged macrophytes and ecological risk assessments in Al-exposed lakes. It is recommended that the Al salt concentration used for the control of lake eutrophication should be reduced to an appropriate level.


Assuntos
Alumínio/toxicidade , Hydrocharitaceae/efeitos dos fármacos , Lagos/química , Poluentes Químicos da Água/toxicidade , Biomassa , China , Clorofila/metabolismo , Clorofila A , Eutrofização , Floculação , Hydrocharitaceae/metabolismo
12.
Ecotoxicol Environ Saf ; 132: 413-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27400421

RESUMO

Pyrogallic acid (PA) is used in various industrial and consumer products. The molecular mechanisms underlying PA's toxicity was not fully understood. In this study, toxicity of PA on Microcystis aeruginosa with reactive oxygen species (ROS) generation as an end point was investigated. The results showed an increase in the percentage of cells with loss of membrane integrity and enhanced intracellular ROS production. Exposure to 50mgL(-1) PA for 48h caused the highest percentage of loss of membrane integrity (56.7%), and a 2.54-fold higher intracellular ROS level compared to control. Further investigation revealed that PA caused a dose-dependent increase in DNA strand breaks (DSB) of M. aeruginosa at exposure concentration from 2 to 50mgL(-1). The incubation of cells with ROS scavengers ascorbic acid, N-acetyl-l-cysteine (NAC) and tocopherol markedly alleviated the level of PA-induced DSB. Analysis of PA autoxidized products in culture solution showed that PA was quickly converted to purpurogallin (PG), and PG was further autoxidized to other polyphenolic compounds. PA and PG might participate a futile redox cycle, which mediated ROS production in M. aeruginosa. These results suggested DNA strands and cell membrane were two targets of ROS induced by PA, and oxidative damage was an important mechanism for the toxicity of PA against M. aeruginosa.


Assuntos
Antioxidantes/toxicidade , Microcystis/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pirogalol/toxicidade , Acetilcisteína/metabolismo , Ácido Ascórbico/metabolismo , Dano ao DNA/efeitos dos fármacos , Microcystis/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
13.
J Environ Sci (China) ; 44: 4-12, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27266297

RESUMO

Long-term use of chlorpyrifos poses a potential threat to the environment that cannot be ignored, yet little is known about the succession of substrate microbial communities in constructed wetlands (CWs) under chlorpyrifos stress. Six pilot-scale CW systems receiving artificial wastewater containing 1mg/L chlorpyrifos were established to investigate the effects of chlorpyrifos and wetland vegetation on the microbial metabolism pattern of carbon sources and community structure, using BIOLOG and denaturing gradient gel electrophoresis (DGGE) approaches. Based on our samples, BIOLOG showed that Shannon diversity (H') and richness (S) values distinctly increased after 30days when chlorpyrifos was added. At the same time, differences between the vegetated and the non-vegetated systems disappeared. DGGE profiles indicated that H' and S had no significant differences among four different treatments. The effect of chlorpyrifos on the microbial community was mainly reflected at the physiological level. Principal component analysis (PCA) of both BIOLOG and DGGE showed that added chlorpyrifos made a difference on test results. Meanwhile, there was no difference between the vegetation and no-vegetation treatments after addition of chlorpyrifos at the physiological level. Moreover, the vegetation had no significant effect on the microbial community at the genetic level. Comparisons were made between bacteria in this experiment and other known chlorpyrifos-degrading bacteria. The potential chlorpyrifos-degrading ability of bacteria in situ may be considerable.


Assuntos
Clorpirifos/toxicidade , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Clorpirifos/análise , Eletroforese em Gel de Gradiente Desnaturante , Monitoramento Ambiental , Águas Residuárias/química , Poluentes Químicos da Água/análise
14.
Microbiol Spectr ; : e0081824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869307

RESUMO

Riverine islands are widespread alluvium wetlands developed in large rivers, and bacterial communities are crucial to their ecological function, yet their assembly processes are rarely addressed. The ecosystem services provided by the middle and the lower Yangtze are primarily threatened by pollution discharge from agricultural land use, and resource overutilization (e.g., embankments), respectively. Here, we assessed bacterial community assembly processes and their drivers within riverine islands in the middle Yangtze River (MR islands) and those in the lower reach (LR islands). A significant distance-decay relationship was observed, although the turnover rate was lower than that of the terrestrial ecosystem with less connectivity. Deterministic and stochastic processes jointly shaped community patterns, and the influence of stochastic increased from 26% in MR islands to 59% for those in LR islands. Meanwhile, the bacterial community in MR islands was controlled more by inorganic nitrogen availability, whereas those in LR islands were governed by pH and EC, although those factors explained a limited fraction of variation in the bacterial community. Potential indicator taxa (affiliated with Nocardioides and Lysobacter) characterized the waterway transport pollution. Overall, our study demonstrated that bacterial community dissimilarity and the importance of dispersal limitation increased concurrently along the flow direction, while distinct local factors further determined bacterial community compositions by selecting habitat-specificity taxa and particularly metabolism function. These findings enhanced our understanding of the mechanisms driving changes in bacterial communities of riverine islands subject to increased anthropogenic impacts.IMPORTANCERivers are among the most threatened ecosystems globally and face multiple stressors related to human activity. However, linkages between microbial diversity patterns and assembly processes in rivers remain unclear, especially in riverine islands developed in large rivers. Our findings reveal that distinct factors result in divergent bacterial community compositions and functional profiles in the riverine islands in the middle Yangtze and those in the lower Yangtze, with substantial differentiation in deterministic and stochastic processes that jointly contribute to bacterial community assemblages. Additionally, keystone species may play important metabolic roles in coping with human-related disturbances. This study provides an improved understanding of relationships between microbial diversity patterns and ecosystem functions under environmental changes in large river ecosystems.

15.
Sci Total Environ ; 931: 172909, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703834

RESUMO

The concentration of heavy metals (HMs) in aquaculture pond sediments significantly affects aquatic food safety and environmental quality. The contamination characteristics, drivers and potential sources of HMs in typical bulk freshwater aquaculture pond sediments in major provinces of China were systematically investigated using a variety of methods and models. Specifically, 130 surface sediment samples were collected from the study area, and the geoaccumulation index (Igeo) and potential ecological risk index (RI) were used to jointly evaluate the characteristics of the HMs. Spearman's correlation and redundancy analysis revealed the main drivers of the HMs. Additionally, the positive matrix factorization (PMF) model and absolute principal component score-multiple linear regression (APCS-MLR) model were used to identify the sources of HMs. The results revealed that the pond sediments were safe for fish culture in most of the study areas. Aquafeed protein content is an important driver of HM concentrations in sediments. The total organic carbon (TOC) content, percentage of clay particles, and pH of the aquaculture pond sediments determined the sediment HMs enrichment abilities as 13.6 %, 52 %, and 9.8 %, respectively. Cd, a significantly enriched pollutant, posed a greater ecological risk than the other five HMs (Cr, Cu, Zn, As, and Pb). Three sources of HMs were identified, including agricultural activity (e.g., aquafeeds, pesticides, and fertilizers), industrial production, and natural sources, with contributions of 44.29 %, 36.66 %, and 19.05 %, respectively. This study provides a scientific basis for minimizing the input and accumulation of HMs in freshwater aquaculture pond sediments, and this can provide insights into the prevention and control of the ecological risks posed by HMs.


Assuntos
Aquicultura , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Lagoas , Poluentes Químicos da Água , China , Metais Pesados/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Lagoas/química , Água Doce/química
16.
Bioresour Bioprocess ; 11(1): 18, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38647851

RESUMO

This comprehensive review systematically examines the multifarious aspects of Nelumbo nucifera, elucidating its ecological, nutritional, medicinal, and biomimetic significance. Renowned both culturally and scientifically, Nelumbo nucifera manifests remarkable adaptability, characterized by its extensive distribution across varied climatic regions, underpinned by its robust rhizome system and prolific reproductive strategies. Ecologically, this species plays a crucial role in aquatic ecosystems, primarily through biofiltration, thereby enhancing habitat biodiversity. The rhizomes and seeds of Nelumbo nucifera are nutritionally significant, being rich sources of dietary fiber, essential vitamins, and minerals, and have found extensive culinary applications. From a medicinal perspective, diverse constituents of Nelumbo nucifera exhibit therapeutic potential, including anti-inflammatory, antioxidant, and anti-cancer properties. Recent advancements in preservation technology and culinary innovation have further underscored its role in the food industry, highlighting its nutritional versatility. In biomimetics, the unique "lotus effect" is leveraged for the development of self-cleaning materials. Additionally, the transformation of Nelumbo nucifera into biochar is being explored for its potential in sustainable environmental practices. This review emphasizes the critical need for targeted conservation strategies to protect Nelumbo nucifera against the threats posed by climate change and habitat loss, advocating for its sustainable utilization as a species of significant value.

17.
J Hazard Mater ; 473: 134662, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788574

RESUMO

Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.


Assuntos
Biodegradação Ambiental , Cádmio , Enterobacter , Sedimentos Geológicos , Poluentes Químicos da Água , Cádmio/toxicidade , Cádmio/metabolismo , Enterobacter/metabolismo , Enterobacter/crescimento & desenvolvimento , Enterobacter/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Rizosfera , Hydrocharitaceae/metabolismo , Hydrocharitaceae/microbiologia , Hydrocharitaceae/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Biomassa
18.
Sci Total Environ ; 934: 173357, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772483

RESUMO

Submerged macrophytes are integral to the functioning of shallow lakes through their interaction with microorganisms. However, we have a limited understanding of how microbial communities in shallow lakes respond when macrophytes are restored after being historically extirpated. Here, we explored the interactions between prokaryotic communities and carbon utilization in two lakes where submerged macrophytes were restored. We found restoration reduced total carbon in sediment by 8.9 %-27.9 % and total organic carbon by 16.7 %-36.9 % relative to control treatment, but had no effects on carbon content in the overlying water. Sediment microbial communities were more sensitive to restoration than planktonic microbes and showed enhanced utilization of simple carbon substrates, such as Tween 40, after restoration. The increase in carbon utilization was attributed to declines in the relative abundance of some genera, such as Saccharicenans and Desertimonas, which were found weakly associated with the utilization of different carbon substrates. These genera likely competed with microbes with high carbon utilization in restored areas, such as Lubomirskia. Our findings highlight how restoring submerged macrophytes can enhance microbial carbon utilization and provide guidance to improve the carbon sequestration capacity of restored shallow lakes.


Assuntos
Carbono , Lagos , Microbiota , Lagos/microbiologia , Carbono/metabolismo , Microbiologia da Água , Sequestro de Carbono , Sedimentos Geológicos/microbiologia , Bactérias/metabolismo , Recuperação e Remediação Ambiental/métodos
19.
Sci Total Environ ; 866: 161218, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36584953

RESUMO

The restoration of submerged macrophytes is an important step in lake ecosystem restoration, during which artificially assisted measures have been widely used for macrophyte recolonization. Compared with natural restoration, the impact of artificially assisted methods on methane (CH4) production and oxidation of lake sediments remains unclear. Therefore, after the restoration of submerged macrophytes in some parts of West Lake (Hangzhou, China), sediment samples from West Lake were collected according to restoration methods and plant coverage. The CH4 production potential, oxidation potential, and microbial community structure in the sediment were discussed through whole-lake sample analysis and resampling verification from typical lake areas. From the analysis of the whole lake, the average daily CH4 production potential (ADP) of artificially restored lake areas (0.12 µg g-1 d-1) was significantly lower than that of the naturally restored lake areas (0.52 µg g-1 d-1). From the resampling analysis of typical lake areas, the ADP of naturally restored lake areas was 1.8 times that of artificially restored lake areas (P < 0.01). Although there was no significant difference in the CH4 oxidation potential between the two restoration methods, the presence of submerged macrophytes significantly increased the abundance of the dominant methanotroph Methylocaldum in the sediment, and the rate of increase in the abundance of the dominant methanotroph Methylosinus was significantly higher in artificially assisted restoration than in natural restoration. This study revealed that the artificially assisted restoration of submerged macrophytes reduced the potential for CH4 production and increased the abundance of dominant methanotrophs in the lake sediment, which would be beneficial for the reduction of CH4 emissions during lake ecological restoration and environmental management.


Assuntos
Ecossistema , Lagos , Lagos/química , China , Oxirredução , Metano/análise , Sedimentos Geológicos
20.
Environ Sci Pollut Res Int ; 29(2): 2365-2374, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34370193

RESUMO

The occurrence of ten target pharmaceuticals was investigated in drinking water sources and tap water in a city in the middle reaches of the Yangtze River, including erythromycin (ERY), roxithromycin (RTM), ciprofloxacin (CPX), ofloxacin (OFX), sulfadiazine (SDZ), sulfamethoxazole (SMX), oxytetracycline (OTC), tetracycline (TC), ibuprofen (IBF), and naproxen (NPX). And the corresponding ecological risk for three classes of aquatic organisms and human health risk for different life stages were estimated. Results demonstrated that nine pharmaceuticals except for TC were detected with the frequencies of 20-100% and the concentrations of

Assuntos
Água Potável , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , China , Monitoramento Ambiental , Humanos , Medição de Risco , Rios , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa