Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 2): 128762, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101657

RESUMO

Nanofibrous scaffolds mimicking important features of the native extracellular matrix (ECM) provide a promising strategy for tissue regeneration. However, 3D scaffolds mimicking natural protein nanofibers and bioactive glycosaminoglycans remain poorly developed. In this study, a biomimetic nanofibrous scaffold composed of natural silk protein nanofibers and glycosaminoglycan hyaluronic acid (HA) was developed. HA functionalization significantly improved the hydrophilicity and bioactivity of silk nanofibers (SNFs). SNFs can be assembled into nanofibrous aerogel scaffolds with low density and desirable shapes on a large scale. More importantly, with the assistance of HA, the silk nanofibrous aerogel scaffolds with ultra-high porosity, natural bioactivity, and structural stability in aqueous environment can be fabricated. In the protease/hyaluronidase solution, the SNF scaffolds with 10.0 % HA can maintain their monolithic shape for >3 weeks. The silk nanofibrous scaffolds not only imitate the composition of ECM but also mimic the hierarchical structure of ECM, providing a favorable microenvironment for cell adhesion and proliferation. These results indicate that this structurally and functionally biomimetic system is a promising tissue engineering scaffold.


Assuntos
Nanofibras , Seda , Seda/química , Ácido Hialurônico/química , Engenharia Tecidual/métodos , Biomimética , Alicerces Teciduais/química , Nanofibras/química , Glicosaminoglicanos
2.
Int J Biol Macromol ; 237: 124223, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996961

RESUMO

Protein nanofibers offer great promise for tissue engineering scaffolds owing to biomimetic architecture and exceptional biocompatibility. Natural silk nanofibrils (SNFs) are promising but unexplored protein nanofibers for biomedical applications. In this study, the SNF-assembled aerogel scaffolds with ECM-mimicking architecture and ultra-high porosity are developed based on a polysaccharides-assisted strategy. The SNFs exfoliated from silkworm silks can be utilized as building blocks to construct 3D nanofibrous scaffolds with tunable densities and desirable shapes on a large scale. We demonstrate that the natural polysaccharides can regulate SNF assembly through multiple binding modes, endowing the scaffolds with structural stability in water and tunable mechanical properties. As a proof of concept, the biocompatibility and biofunctionality of the chitosan-assembled SNF aerogels were investigated. The nanofibrous aerogels have excellent biocompatibility, and their biomimetic structure, ultra-high porosity, and large specific surface area endow the scaffolds with enhanced cell viability to mesenchymal stem cells. The nanofibrous aerogels were further functionalized by SNF-mediated biomineralization, demonstrating their potential as a bone-mimicking scaffold. Our results show the potential of natural nanostructured silks in the field of biomaterials and provide a feasible strategy to construct protein nanofiber scaffolds.


Assuntos
Nanofibras , Seda , Seda/química , Nanofibras/química , Biomimética , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos
3.
Biointerphases ; 17(3): 031001, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501192

RESUMO

In situ release of nitric oxide (NO) has been suggested to be a potential functionalization strategy for blood-contacting implants. In this study, the NO generation capability catalyzed by the copper ion-incorporated silk fibroin (SF) films in the presence of S-nitroso-N-acetyl-dl-penicillamine (SNAP) is demonstrated. Cu(II) is effectively bound to the surface of the SF film based on metal-protein coordination. The x-ray photoelectron spectroscopy results indicate that copper ions may exist on the surface of the SF film in the form of Cu(II)/Cu(I) coexistence. The degradation behavior showed that the bound copper ions on the surface of the SF films can maintain a slow release in phosphate-buffered saline (PBS) or collagenase IA solution for 7 days. There was no significant difference in the release of copper ions between PBS degradation and enzyme degradation. The loading of copper ions significantly improved the release of NO from SNAP through catalysis. Based on the biological effects of copper ions and the ability to catalyze the release of NO from S-nitrosothiols, copper ion loading provides an option for the construction of bioactive SF biomaterials.


Assuntos
Fibroínas , Catálise , Cobre/química , Íons , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa