Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38300515

RESUMO

Accurate cell type annotation in single-cell RNA-sequencing data is essential for advancing biological and medical research, particularly in understanding disease progression and tumor microenvironments. However, existing methods are constrained by single feature extraction approaches, lack of adaptability to immune cell types with similar molecular profiles but distinct functions and a failure to account for the impact of cell label noise on model accuracy, all of which compromise the precision of annotation. To address these challenges, we developed a supervised approach called scMMT. We proposed a novel feature extraction technique to uncover more valuable information. Additionally, we constructed a multi-task learning framework based on the GradNorm method to enhance the recognition of challenging immune cells and reduce the impact of label noise by facilitating mutual reinforcement between cell type annotation and protein prediction tasks. Furthermore, we introduced logarithmic weighting and label smoothing mechanisms to enhance the recognition ability of rare cell types and prevent model overconfidence. Through comprehensive evaluations on multiple public datasets, scMMT has demonstrated state-of-the-art performance in various aspects including cell type annotation, rare cell identification, dropout and label noise resistance, protein expression prediction and low-dimensional embedding representation.


Assuntos
Pesquisa Biomédica , Aprendizado Profundo , Humanos , Anotação de Sequência Molecular , Análise da Expressão Gênica de Célula Única , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa