Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 131(9): 1529-1542, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39317702

RESUMO

BACKGROUND: Mesothelioma (MESO) is an insidious malignancy with a complex diagnosis and a poor prognosis. Our study unveils Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) as a valuable diagnostic and prognostic marker for MESO, exploring its role in MESO pathogenesis. METHODS: We utilised tissue samples and clinicopathologic data to evaluate the diagnostic and prognostic significance of GFPT2 as a biomarker for MESO. The role of GFPT2 in the malignant progression of MESO was investigated through in vitro and in vivo experiments. The activation of NF-κB-p65 through O-GlcNAcylation at Ser75 was elucidated using experiments like HPLC-QTRAP-MS/MS and mass spectrometry analysis. RESULTS: The study demonstrates that GFPT2 exhibits a sensitivity of 92.60% in diagnosing MESO. Overexpression of it has been linked to an unfavourable prognosis. Through rigorous verification, we have confirmed that elevated GFPT2 levels drive malignant proliferation, invasiveness, and metastasis in MESO. At the molecular level, GFPT2 augments p65 O-GlcNAcylation, orchestrating its nuclear translocation and activating the NF-κB signalling pathway. CONCLUSIONS: Our insights suggest GFPT2's potential as a distinctive biomarker for MESO diagnosis and prognosis, and as an innovative therapeutic target, offering a new horizon for identification and treatment strategies in MESO management.


Assuntos
Biomarcadores Tumorais , Progressão da Doença , Humanos , Biomarcadores Tumorais/metabolismo , Prognóstico , Masculino , Feminino , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Animais , Camundongos , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/patologia , Mesotelioma Maligno/diagnóstico , Linhagem Celular Tumoral , Fator de Transcrição RelA/metabolismo , Proliferação de Células , Mesotelioma/patologia , Mesotelioma/metabolismo , Mesotelioma/diagnóstico , Mesotelioma/genética , Pessoa de Meia-Idade , Transdução de Sinais , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Camundongos Nus
2.
J Hepatol ; 80(1): 82-98, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37838036

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is among the most prevalent and lethal cancers worldwide. The tumor microenvironment (TME) contributes to the poor response of patients with HCC to current therapies, while tumor vascular endothelial cells (ECs) are fundamental TME components that significantly contribute to tumor progression. However, the specific functions and mechanisms of tumor vascular ECs in HCC remain unclear. METHODS: We screened and validated diacylglycerol kinase gamma (DGKG) hyper-expression specifically in HCC tumor vascular ECs. Single-cell RNA-sequencing, cytometry by time-of-flight, and in vitro and in vivo studies were performed to investigate the functions of endothelial DGKG. Multiplexed immunohistochemistry staining and flow cytometry were used to evaluate changes in the TME. RESULTS: Functionally, endothelial DGKG promotes tumor angiogenesis and immunosuppressive regulatory T-cell differentiation in HCC. Of significance, we found that HIF-1α activates DGKG transcription by directly binding to its promoter region under hypoxia. Upregulated DGKG promotes HCC progression by recruiting ubiquitin specific peptidase 16 to facilitate ZEB2 deubiquitination, which increases TGF-ß1 secretion, thus inducing tumor angiogenesis and regulatory T-cell differentiation. Importantly, targeting endothelial DGKG potentiated the efficiency of dual blockade of PD-1 and VEGFR-2. CONCLUSION: Hypoxia-induced EC-specific DGKG hyper-expression promotes tumor angiogenesis and immune evasion via the ZEB2/TGF-ß1 axis, suggesting EC-specific DGKG as a potential therapeutic target for HCC. IMPACT AND IMPLICATIONS: Here, we reported that hypoxia-induced endothelial cell-specific DGKG hyper-expression promotes angiogenesis and immune evasion in HCC by recruiting USP16 for K48-linked deubiquitination and inducing the subsequent stabilization of ZEB2, leading to increased TGF-ß1 secretion. Most importantly, endothelial DGKG inhibition greatly improved the efficacy of the dual combination of anti-VEGFR2 and anti-PD-1 treatment in a mouse HCC model, significantly inhibiting the malignant progression of HCC and improving survival. This preclinical study supports the targeting of endothelial DGKG as a potential strategy for precision HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fator de Crescimento Transformador beta1/metabolismo , Células Endoteliais/metabolismo , Evasão da Resposta Imune , Angiogênese , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Hipóxia/metabolismo , Modelos Animais de Doenças , Microambiente Tumoral
3.
iScience ; 27(6): 109821, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770131

RESUMO

The cyclic AMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) is a crucial regulator of hepatic lipid metabolism and gluconeogenesis and correlates with tumorigenesis. However, the mechanism through which CRTC2 regulates hepatocellular carcinoma (HCC) progression is largely unknown. Here, we found that increased CRTC2 expression predicted advanced tumor grade and stage, as well as worse prognosis in patients with HCC. DNA promoter hypomethylation led to higher CRTC2 expression in HCC. Functionally, CRTC2 contributed to HCC malignant phenotypes through the activated Wnt/ß-catenin pathway, which could be abrogated by the small-molecular inhibitor XAV-939. Moreover, Crtc2 facilitated tumor growth while concurrently downregulating the PD-L1/PD-1 axis, resulting in primary resistance to immunotherapy. In immunocompetent mice models of HCC, targeting Crtc2 in combination with anti-PD-1 therapy prominently suppressed tumor growth by synergistically enhancing responsiveness to immunotherapy. Collectively, targeting CRTC2 might be a promising therapeutic strategy to sensitize immunotherapy in HCC.

4.
Cell Mol Gastroenterol Hepatol ; 17(3): 399-421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38036082

RESUMO

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is a common chronic liver disease worldwide. No effective pharmacologic therapies for MASH have been developed; to develop such promising drugs, the underlying mechanisms regulating MASH need to be elucidated. Here, we aimed to determine the role of ovarian tumor domain-containing protein 5 (OTUD5) in MASH progression and identify a specific mechanism. METHODS: The expression levels of OTUD subfamily under palmitic acid/oleic acid (PAOA) stimulation were screened. OTUD5 expression was assessed in human liver tissues without steatosis, those with simple steatosis, and those with MASH. MASH models were developed in hepatocyte-specific Otud5-knockout mice that were fed high-fat high-cholesterol and high-fat high-cholesterol plus high-fructose/sucrose diet for 16 weeks. RESULTS: The expression of OTUD5 was down-regulated in fatty liver and was negatively related to the progression of MASH. Lipid accumulation and inflammation were exacerbated by Otud5 knockdown but attenuated by Otud5 overexpression under PAOA treatment. Hepatocyte-specific Otud5 deletion markedly exacerbated steatosis, inflammation, and fibrosis in the livers of 2 MASH mouse models. We identified voltage-dependent anion channel 2 (VDAC2) as an OTUD5-interacting partner; OTUD5 cleaved the K48-linked polyubiquitin chains from VDAC2, and it inhibited subsequent proteasomal degradation. The anabolic effects of OTUD5 knockdown on PAOA-induced lipid accumulation were effectively reversed by VDAC2 overexpression in primary hepatocytes. Metabolomic results revealed that VDAC2 is required for OTUD5-mediated protection against hepatic steatosis by maintaining mitochondrial function. CONCLUSIONS: OTUD5 may ameliorate MASH progression via VDAC2-maintained mitochondrial homeostasis. Targeting OTUD5 may be a viable MASH-treatment strategy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Colesterol/metabolismo , Enzimas Desubiquitinantes/metabolismo , Hepatócitos/metabolismo , Homeostase , Inflamação/patologia , Lipídeos , Hepatopatia Gordurosa não Alcoólica/patologia , Proteases Específicas de Ubiquitina/metabolismo
5.
Cancer Lett ; 593: 216935, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704136

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent malignancy characterized by complex heterogeneity and drug resistance. Resistance to ferroptosis is closely related to the progression of HCC. While HCC tumors vary in their sensitivity to ferroptosis, the precise factors underlying this heterogeneity remain unclear. In this study, we sought to elucidate the mechanisms that contribute to ferroptosis resistance in HCC. Whole-genome CRISPR/Cas9 screen using a subtoxic concentration (IC20) of ferroptosis inducer erastin in the HCC cell line Huh7 revealed TRIM34 as a critical driver of ferroptosis resistance in HCC. Further investigation revealed that TRIM34 suppresses ferroptosis in HCC cells, promoting their proliferation, migration, and invasion both in vitro and in vivo. Furthermore, TRIM34 expression is elevated in HCC tumor tissues, correlating with a poor prognosis. Mechanistically, TRIM34 directly interacts with Up-frameshift 1 (UPF1), a core component of the nonsense-mediated mRNA decay (NMD) pathway, to promote its ubiquitination and degradation. This interaction suppresses GPX4 transcript degradation, thus promoting the protein levels of this critical ferroptosis suppressor in HCC. In light of the close crosstalk between ferroptosis and the adaptive immune response in cancer, HCC cells with targeting knockdown of TRIM34 exhibited an improved response to anti-PD-1 treatment. Taken together, the TRIM34/UPF1/GPX4 axis mediates ferroptosis resistance in HCC, thereby promoting malignant phenotypes. Targeting TRIM34 may thus represent a promising new strategy for HCC treatment.


Assuntos
Sistemas CRISPR-Cas , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/antagonistas & inibidores
6.
Cancer Lett ; 552: 215970, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265652

RESUMO

Hepatocellular carcinoma (HCC) is a leading malignancy of the digestive system, especially in China. Although radiotherapy, chemotherapy, and transarterial chemoembolization have achieved tremendous success, surgical resection remains the primary treatment for HCC patients. Recent studies have shown that intravenous anesthetic drugs may affect the malignant behaviors of tumor cells, ultimately leading to differences in the postoperative prognosis of patients. Etomidate is one of the most widely used intravenous anesthetic drugs for the induction and maintenance of anesthesia in tumor patients undergoing surgery. However, the effects and underlying mechanisms of etomidate on HCC cells have not yet been characterized. Our study indicated that etomidate significantly impedes the malignant progression of HCC cells. Mechanistically, etomidate inhibits phosphorylation and, ultimately, the activity of Janus kinase 2 (JAK2) by competing with ATP for binding to the ATP-binding pocket of JAK2. Thus, it suppresses the JAK2/STAT3 signaling pathway in HCC cells to exert its anti-tumor efficacy. Herein, we provide preclinical evidence that etomidate is the optimal choice for surgical treatment of HCC patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Etomidato , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Janus Quinase 2/metabolismo , Etomidato/farmacologia , Etomidato/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Anestésicos Intravenosos/farmacologia , Anestésicos Intravenosos/uso terapêutico , Trifosfato de Adenosina
7.
Cell Metab ; 35(6): 912-927.e7, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071992

RESUMO

Metabolic reprogramming plays a crucial role in the development of hepatocellular carcinoma (HCC). However, the key drivers of metabolic reprogramming underlying HCC progression remain unclear. Using a large-scale transcriptomic database and survival correlation screening, we identify thymidine kinase 1 (TK1) as a key driver. The progression of HCC is robustly mitigated by TK1 knockdown and significantly aggravated by its overexpression. Furthermore, TK1 promotes the oncogenic phenotypes of HCC not only through its enzymatic activity and production of deoxythymidine monophosphate (dTMP) but also by promoting glycolysis via binding with protein arginine methyltransferase 1 (PRMT1). Mechanistically, TK1 directly binds PRMT1 and stabilizes it by interrupting its interactions with tripartite-motif-containing 48 (TRIM48), which inhibits its ubiquitination-mediated degradation. Subsequently, we validate the therapeutic capacity of hepatic TK1 knockdown in a chemically induced HCC mouse model. Therefore, targeting both the enzyme-dependent and -independent activity of TK1 may be therapeutically promising for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Ubiquitinação , Linhagem Celular Tumoral
8.
Nat Commun ; 13(1): 7677, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509766

RESUMO

Programmed death receptor-1 (PD-1) blockade have achieved some efficacy but only in a fraction of patients with hepatocellular carcinoma (HCC). Programmed cell death 1 ligand 1 (PD-L1) binds to its receptor PD1 on T cells to dampen antigen-tumor immune responses. However, the mechanisms underlying PD-L1 regulation are not fully elucidated. Herein, we identify that tumoral Prdm1 overexpression inhibits cell growth in immune-deficient mouse models. Further, tumoral Prdm1 overexpression upregulates PD-L1 levels, dampening anti-tumor immunity in vivo, and neutralizes the anti-tumor efficacy of Prdm1 overexpression in immune-competent mouse models. Mechanistically, PRDM1 enhances USP22 transcription, thus reducing SPI1 protein degradation through deubiquitination, which enhances PD-L1 transcription. Functionally, PD-1 mAb treatment reinforces the efficacy of Prdm1-overexpressing HCC immune-competent mouse models. Collectively, we demonstrate that the PRDM1-USP22-SPI1 axis regulates PD-L1 levels, resulting in infiltrated CD8+ T cell exhaustion. Furthermore, PRDM1 overexpression combined with PD-(L)1 mAb treatment provides a therapeutic strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Evasão da Resposta Imune , Linfócitos T CD8-Positivos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa