RESUMO
A highly selective and divergent synthesis which enabled access to various complex compounds is highly attractive in organic synthesis and medicinal chemistry. Herein, we developed an effective method for divergent synthesis of highly substituted tetrahydroquinolines via Lewis base catalyzed switchable annulations of Morita-Baylis-Hillman carbonates with activated olefins. The reaction displayed switchable [4 + 2] or [3 + 2] annulations via catalyst or substrate control, providing a diverse range of architectures which contained highly substituted tetrahydroquinolines or cyclopentenes with three contiguous stereocenters bearing a quaternary carbon center in high yields with excellent diastereoselectivities and regioselectivities. Furthermore, synthetic utility of this strategy was further highlighted by gram-scale experiments and simple transformations of the products.
RESUMO
AIMS: This study aimed to screen a bacterial strain with high detoxifying capability for aflatoxin B1 (AFB1), verify its biotransformation efficiency, and detoxification process. METHODS AND RESULTS: A total of 350 samples collected from different environmental niche were screened using coumarin as the sole carbon source. High Performance Liquid Chromatography (HPLC) was used to detect residues of AFB1, and 16S rRNA sequencing was performed on the isolated strain with the highest AFB1 removal ratio for identification. The detoxified products of this strain were tested for toxicity in Escherichia coli as well as LO2, Caco-2, and HaCaT human cell lines. HPLC-MS was applied to further confirm the AFB1 removal and detoxification process. CONCLUSIONS: We identified a strain from plant leaf designated as DT with high AFB1-detoxifying ability that is highly homologous to Bacillus aryabhattai. The optimum detoxification conditions of this strain were 37°C and pH 8.0, resulting in 82.92% removal ratio of 2 µg mL-1 AFB1 in 72 h. The detoxified products were nontoxic for E. coli and significantly less toxic for the LO2, Caco-2, and HaCaT human cell lines. HPLC-MS analysis also confirmed the significant drop of the AFB1 characteristic peak. Two possible metabolic products, C19H15O8 (m/z 371) and C19H19O8 (m/z 375), were observed by mass spectrometry. Potential biotransformation pathway was based on the cleavage of double bond in the terminal furan of AFB1. These generated components had different chemical structures with AFB1, manifesting that the attenuation of AFB1 toxicity would be attributed to the destruction of lactone structure of AFB1 during the conversion process.
Assuntos
Aflatoxina B1 , Escherichia coli , Humanos , Aflatoxina B1/metabolismo , Células CACO-2 , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Ribossômico 16S/genéticaRESUMO
Doxorubicin is one of the most widely used antitumor drugs and is currently produced via the chemical conversion method, which suffers from high production costs, complex product separation processes, and serious environmental pollution. Biocatalysis is considered a more efficient and environment-friendly method for drug production. The cytochrome daunorubicin C-14 hydroxylase (DoxA) is the essential enzyme catalyzing the conversion of daunorubicin to doxorubicin. Herein, the DoxA from Streptomyces peucetius subsp. caesius ATCC 27952 was expressed in Escherichia coli, and the rational design strategy was further applied to improve the enzyme activity. Eight amino acid residues were identified as the key sites via molecular docking. Using a constructed screening library, we obtained the mutant DoxA(P88Y) with a more rational protein conformation, and a 56% increase in bioconversion efficiency was achieved by the mutant compared to the wild-type DoxA. Molecular dynamics simulation was applied to understand the relationship between the enzyme's structural property and its substrate-binding efficiency. It was demonstrated that the mutant DoxA(P88Y) formed a new hydrophobic interaction with the substrate daunorubicin, which might have enhanced the binding stability and thus improved the catalytic activity. Our work lays a foundation for further exploration of DoxA and facilitates the industrial process of bio-production of doxorubicin.
Assuntos
Sistema Enzimático do Citocromo P-450 , Daunorrubicina , Daunorrubicina/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Doxorrubicina/química , Conformação ProteicaRESUMO
Loquat fruit is one of the most perishable fruits in China, and has a very limited shelf life because of mechanical injury and microbial decay. Due to an increasing concern about human health and environmental security, antagonistic microorganisms have been a potential alternative for fungicides to control postharvest diseases. In this work, the antifungal effect of volatile organic compounds (VOCs) produced by Bacillus methylotrophicus BCN2 and Bacillus thuringiensis BCN10 against five postharvest pathogens isolated from loquat fruit, Fusarium oxysporum, Botryosphaeria sp., Trichoderma atroviride, Colletotrichum gloeosporioides, and Penicillium expansum were evaluated by in vitro and in vivo experiments. As a result, the VOCs released by BCN2 and BCN10 were able to suppress the mycelial growth of all targeted pathogens according to inhibition ratio in the double petri-dish assay as well as disease incidence and disease diameter on loquat fruits. The main volatile compounds were identified by solid-phase microextraction (SPME)-gas chromatography. These VOCs produced by the two strains played complementary roles in controlling these five molds and enabled loquat fruits to keep fresh for ten days, significantly. This research will provide a theoretic foundation and technical support for exploring the functional components of VOCs applicable in loquat fruit preservation.
Assuntos
Antifúngicos/farmacologia , Bacillus thuringiensis/química , Bacillus/química , Eriobotrya/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Cromatografia Gasosa , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Hypocreales/efeitos dos fármacos , Hypocreales/crescimento & desenvolvimento , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/químicaRESUMO
The grain contamination by Aspergillus spp. has been a serious issue. This study exhibited the excellent antifungal effects of the essential oil compounds (EOCs) geraniol and citral against common grain pathogens (A. flavus and A. ochraceus) in vitro and in situ. The inhibitory mechanisms were also evaluated from the perspective of cell membrane permeability, reactive oxygen species (ROS) generation, and Aspergillus spp. growth-related gene expression. Meanwhile, the combined effects of EOCs in the vapor phase and modified atmosphere packaging (MAP) were examined to find an alternative preservation method for controlling Aspergillus spp. The results indicated that citral exhibited the antifungal activity mainly by downregulating the sporulation- and growth-related genes for both pathogens. Geraniol displayed inhibitory effectiveness against A. flavus predominantly by inducing the intracellular ROS accumulation and showed toxicity against A. ochraceus principally by changing cell membrane permeability. Furthermore, the synthetic effects of EOCs and MAP (75% CO2 and 25% N2) induced better grain quality than the current commercial fumigant AlP. These findings reveal that EOCs have potential to be a novel grain preservative for further application.
Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus ochraceus/efeitos dos fármacos , Monoterpenos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Terpenos/química , Monoterpenos Acíclicos , Aspergillus flavus/genética , Aspergillus flavus/ultraestrutura , Aspergillus ochraceus/genética , Aspergillus ochraceus/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Grão Comestível/microbiologia , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismoRESUMO
Validamycin A (Val-A) synthesized by Streptomyces hygroscopicus 5008 is widely used as a high-efficient antibiotic to protect plants from sheath blight disease. A novel fermentation strategy was introduced to stimulate Val-A production by adding oxygen carriers. About 58 % increase in Val-A production was achieved using liquid paraffin. Further, biomass, carbon source, metabolic genes, and metabolic enzymes were studied. It was also found that the supplementation of liquid paraffin increased the medium dissolved oxygen and intracellular oxidative stress level. The expression of the global regulators afsR and soxR sensitive to ROS, ugp catalyzing synthesis of Val-A precursor, and Val-A structural genes was enhanced. The change of the activities of glucose-6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase was observed, which reflected the redirection of carbon metabolic flux. Based on these results, liquid paraffin addition as an oxygen carrier could be a useful technique in industrial production of Val-A and our study revealed a redox-based secondary metabolic regulation in S. hygroscopicus 5008, which provided a new insight into the regulation of the biosynthesis of secondary metabolites.
Assuntos
Antibacterianos/biossíntese , Inositol/análogos & derivados , Óleo Mineral , Oxigênio/metabolismo , Fermentação , Glucosefosfato Desidrogenase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Inositol/biossíntese , Estresse Oxidativo , Streptomyces/enzimologia , Streptomyces/genética , Streptomyces/metabolismoRESUMO
OBJECTIVE: To evaluate the effects of neonatal exposure to different doses of bisphenol A (BPA) on the vaginal opening day (VOD), hypothalamic Kiss-1 mRNA expression, and ovarian estrogen receptor (ER) mRNA expression in female rats. METHODS: Neonatal female Sprague-Dawley (SD) rats were randomly divided into six groups: blank control, vehicle, 17ß-estradiol (17ß-estradiol, E2, 10â µg/d), low-dose BPA [25â µg(kg·d)], medium-dose BPA [50â µg(kg·d)], and high-dose BPA groups [250â µg(kg·d)]. The rats were subcutaneously injected with respective agents on postnatal days 0-6. The VOD was recorded, and each rat was sacrificed on the same day. The hypothalamus and ovary were taken and weighed, and the organ coefficients of hypothalamus and ovary were calculated. The hypothalamic Kiss-1 mRNA expression and ovarian ERα and ERß mRNA expression were measured by real-time PCR. RESULTS: Compared with the control group, the E2 and medium- and high-dose BPA groups had advanced VOD, and the E2 group had significantly reduced hypothalamic Kiss-1 mRNA expression and ovarian ERß mRNA expression (P<0.05). CONCLUSIONS: Neonatal exposure to medium- and high-dose BPA[50 and 250 µg/(kg·d)] can induce precocious puberty in rats, but it may not result from the change in hypothalamic Kiss-1 mRNA expression. Neonatal exposure to low-dose BPA [25â µg/(kg·d)] does not induce precocious puberty in rats.
Assuntos
Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Maturidade Sexual/efeitos dos fármacos , Envelhecimento , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/genéticaRESUMO
An autoinducer-2 (AI-2) signaling molecule from Bacillus was synthesized, and its mechanism on the biofilm formation and biocontrol ability of B. amyloliquefaciens was verified in vitro and in vivo. The 16S/ITS amplicon sequencing was used to analyze the effect of B. amyloliquefaciens B4 with or without AI-2 on the microflora of pears during storage. The results showed that B. amyloliquefaciens B4 secreted AI-2, which promoted biofilm formation. Additionally, AI-2 at a concentration of 40 µmol/L enhanced the biocontrol ability of B. amyloliquefaciens B4 on postharvest pear and loquat fruits. Finally, amplicon sequencing demonstrated that the addition of AI-2 increased the abundance of B. amyloliquefaciens B4 in fruit by stimulating the growth and biofilm formation of this bacterium.
Assuntos
Bacillus amyloliquefaciens , Bacillus , Eriobotrya , Pyrus , Frutas/microbiologiaRESUMO
The purpose of this study was to investigate ferroptosis in Escherichia coli O157:H7 caused by ferrous sulfate (FeSO4) and to examine the synergistic effectiveness of FeSO4 combined with ultrasound-emulsified cinnamaldehyde nanoemulsion (CALNO) on inactivation of E. coli O157:H7 in vitro and in vivo. The results showed that FeSO4 could cause ferroptosis in E. coli O157:H7 via generating reactive oxygen species (ROS) and exacerbating lipid peroxidation. In addition, the results indicated that FeSO4 combined with CALNO had synergistic bactericidal effect against E. coli O157:H7 and the combined treatment could lead considerable nucleic acids and protein to release by damaging the cell membrane of E. coli O157:H7. Besides, FeSO4 combined with CALNO had a strong antibiofilm ability to inhibit E. coli O157:H7 biofilm formation by reducing the expression of genes related on biofilm formation. Finally, FeSO4 combined with CALNO exhibited the significant antibacterial activity against E. coli O157:H7 in hami melon and cherry tomato.
Assuntos
Acroleína , Emulsões , Escherichia coli O157 , Ferroptose , Compostos Ferrosos , Escherichia coli O157/efeitos dos fármacos , Acroleína/análogos & derivados , Acroleína/farmacologia , Acroleína/química , Compostos Ferrosos/farmacologia , Compostos Ferrosos/química , Ferroptose/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Ondas Ultrassônicas , Espécies Reativas de Oxigênio/metabolismoRESUMO
Numerous studies have established a strong association between Malassezia and various skin disorders, including atopic dermatitis. Finding appropriate methods or medications to alleviate Malassezia-induced skin damage is of notable public interest. This study aimed to evaluate the therapeutic effect of the exopolysaccharide EPS1, produced by Paenibacillus polymyxa, on Malassezia restricta-induced skin damage. In vitro assays indicated that EPS1 reduced the expression of pro-inflammatory cytokine genes in TNF-α-induced HaCaT cells. In a murine model, EPS1 was found to mitigate clinical symptoms, reduce epidermal thickness and mast cell infiltration, improve skin barrier function, decrease pro-inflammatory cytokine levels associated with type 17 inflammation, enhance Tregs in the spleen, upregulate the transcription of Treg-related genes in skin lesions, and modulate the skin microbiota. This study is the first to report the alleviating effect of Paenibacillus exopolysaccharide on Malassezia-induced skin inflammation and its impact on the skin microbiota. These findings support the potential of Paenibacillus exopolysaccharides as consumer products and therapeutic agents for managing Malassezia-induced skin damage by improving skin barrier function, modulating immune responses, and influencing skin microbiota.
Assuntos
Malassezia , Microbiota , Polissacarídeos Bacterianos , Pele , Malassezia/efeitos dos fármacos , Animais , Camundongos , Pele/microbiologia , Pele/efeitos dos fármacos , Pele/imunologia , Humanos , Polissacarídeos Bacterianos/farmacologia , Microbiota/efeitos dos fármacos , Citocinas/metabolismo , Paenibacillus , Modelos Animais de Doenças , Células HaCaTRESUMO
Gleditsia sinensis, commonly known as Chinese Zaojiao, has important economic value and medicinal compounds in its fruits and thorns, making it widely cultivated artificially in China. However, the available literature on the impact of waterlogging on the growth of G. sinensis seedlings and the accumulation of metabolite compounds in its thorns is limited. To address this knowledge gap, G. sinensis seedlings were planted in soil supplemented with pindstrup substrate, which enhances the water-holding capacity of the soil. The analyses of morphological traits and nutrient elements in one-year-old G. sinensis seedlings grown naturally under ambient conditions and metabolite accumulation in its thorns were conducted. The results showed that the waterlogged soil significantly diminished the height, fresh weight, and dry weight of seedling roots and stems (P < 0.05). Furthermore, waterlogging hindered the uptake of iron (Fe) and manganese (Mn), as well as the transport of potassium (K). The identified metabolites within the thorns were categorized into 16 distinct groups. Relative to the control soil, fatty acids and derivatives were the most down-regulated metabolites in the waterlogged soil, accounting for 40.58% of the total metabolites, followed by lignans (38.71%), phenolic acids (34.48%), saccharides and alcohols (34.15%), steroids (16.67%), alkaloids (12.24%), flavonoids (9.28%), and glycerophospholipids (7.41%). Conversely, nucleotides and derivatives experienced the greatest up-regulation in the waterlogged soil, accounting for 50.00% of the total metabolites. In conclusion, waterlogging negatively impacted the growth of G. sinensis seedlings and inhibited the accumulation of metabolites. Hence, when considering the accumulation of secondary metabolites such as lignans and phenolic acids, appropriate management of soil moisture levels should be taken into account.
Assuntos
Gleditsia , Lignanas , Plântula , Lignanas/metabolismo , Gleditsia/química , Extratos Vegetais/metabolismo , Raízes de PlantasRESUMO
CYP450 3A4 (CYP3A4), encoded by the CYP3A4 gene, is a major enzyme catalyzing the metabolism of both endogenous and exogenous agents that may play a role in the etiology of carcinogenesis. Several potentially functional polymorphisms of the CYP3A4 gene have been implicated in cancer risk, but individually published studies have shown inconclusive results. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to investigate the association between CYP3A4*1B (rs2740574 A > G) polymorphism and cancer risk. Eleven studies were included with a total of 3,810 cancer patients and 3,173 healthy controls. We found that the G allele and GG genotype of CYP3A4*1B polymorphism were associated with increased risk of cancers using the fixed effects model (allele model: odds ratio (OR) = 1.24, 95 %CI: 1.09-1.42, P = 0.001; recessive model: OR = 1.77, 95 %CI: 1.30-2.41, P < 0.001; homozygous model: OR = 1.72, 95 %CI: 1.19-2.47, P = 0.004). Subgroup analyses by cancer type showed that the G allele and G carrier (AG + GG) of CYP3A4*1B polymorphism had significant associations with increased risk of prostate cancer, but not with breast cancer, leukemia, or other cancers. With further subgroup analysis based on different ethnicities, the results indicated that the GG genotype of CYP3A4*1B polymorphism might increase the risk of cancer among African populations. However, similar associations were not observed among Caucasian and Asian populations. Results from the current meta-analysis indicate that the G allele and GG genotype of CYP3A4*1B polymorphism might be associated with increased cancer risk, especially for prostate cancer among African populations.
Assuntos
Citocromo P-450 CYP3A/genética , Neoplasias/etiologia , Polimorfismo Genético/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Humanos , Literatura de Revisão como Assunto , Fatores de RiscoRESUMO
The presence of mycotoxins in cereals can pose a significant health risk to animals and humans. China is one of the countries that is facing cereal contamination by mycotoxins. Treating mycotoxin-contaminated cereals with established physical and chemical methods can lead to negative effects, such as the loss of nutrients, chemical residues, and high energy consumption. Therefore, microbial detoxification techniques are being considered for reducing and treating mycotoxins in cereals. This paper reviews the contamination of aflatoxins, zearalenone, deoxynivalenol, fumonisins, and ochratoxin A in major cereals (rice, wheat, and maize). Our discussion is based on 8700 samples from 30 provincial areas in China between 2005 and 2021. Previous research suggests that the temperature and humidity in the highly contaminated Chinese cereal-growing regions match the growth conditions of potential antagonists. Therefore, this review takes biological detoxification as the starting point and summarizes the methods of microbial detoxification, microbial active substance detoxification, and other microbial inhibition methods for treating contaminated cereals. Furthermore, their respective mechanisms are systematically analyzed, and a series of strategies for combining the above methods with the treatment of contaminated cereals in China are proposed. It is hoped that this review will provide a reference for subsequent solutions to cereal contamination problems and for the development of safer and more efficient methods of biological detoxification.
RESUMO
Gemcitabine plus cisplatin (GP) chemotherapy is the standard of care for nasopharyngeal carcinoma (NPC). However, the mechanisms underpinning its clinical activity are unclear. Here, using single-cell RNA sequencing and T cell and B cell receptor sequencing of matched, treatment-naive and post-GP chemotherapy NPC samples (n = 15 pairs), we show that GP chemotherapy activated an innate-like B cell (ILB)-dominant antitumor immune response. DNA fragments induced by chemotherapy activated the STING type-I-interferon-dependent pathway to increase major histocompatibility complex class I expression in cancer cells, and simultaneously induced ILB via Toll-like receptor 9 signaling. ILB further expanded follicular helper and helper type 1 T cells via the ICOSL-ICOS axis and subsequently enhanced cytotoxic T cells in tertiary lymphoid organ-like structures after chemotherapy that were deficient for germinal centers. ILB frequency was positively associated with overall and disease-free survival in a phase 3 trial of patients with NPC receiving GP chemotherapy ( NCT01872962 , n = 139). It also served as a predictor for favorable outcomes in patients with NPC treated with GP and immunotherapy combined treatment (n = 380). Collectively, our study provides a high-resolution map of the tumor immune microenvironment after GP chemotherapy and uncovers a role for B cell-centered antitumor immunity. We also identify and validate ILB as a potential biomarker for GP-based treatment in NPC, which could improve patient management.
Assuntos
Cisplatino , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Cisplatino/uso terapêutico , Gencitabina , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/etiologia , Neoplasias Nasofaríngeas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/uso terapêutico , Microambiente TumoralRESUMO
Recombinant Pichia pastoris yeasts expressing cecropin A (GS115/CEC), was evaluated for the control of the blue mold of apple caused by Penicillium expansum due to cecropin A peptide's effective antimicrobial effects on P. expansum spores by the thiazolyl blue (MTT) assay. Then, the protein concentration was determined and it was expressed at high levels up to 14.2 mg/L in the culture medium. Meanwhile, the population growth was assayed in vivo. The population growth of recombinant strain GS115/CEC was higher than that of non-transformed strain GS115 in red Fuji apples wounds. Recombinant yeast strains GS115/CEC significantly inhibited growth of germinated P. expansum spores in vitro and inhibited decay development caused by P. expansum in apple fruits in vivo when compared with apple fruits inoculated with sterile water or the yeast strain GS115/pPIC (plasmid pPIC9k transformed in GS115). This study demonstrated the potential of expression of the antifungal peptide in yeast for the control of postharvest blue mold infections on pome fruits.
Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Malus/microbiologia , Penicillium/crescimento & desenvolvimento , Pichia/metabolismo , Doenças das Plantas/microbiologia , Peptídeos Catiônicos Antimicrobianos/genética , Expressão Gênica , Pichia/genética , Pichia/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genéticaRESUMO
Biofilms are sessile microbial communities growing on surfaces, which are encased in some self-produced extracellular material. Beneficial biofilm could be widely used in agriculture, food, medicine, environment and other fields. As an ideal biocontrol agent, Bacillus amyloliquefaciens B4 can form a strong biofilm under static conditions. In this study, we screened out metal compounds that enhanced or inhibited the biofilm formation ability of B4, established the relationship between the biofilm of B4 strain and its postharvest biocontrol effect, and explored the regulation of metal compounds on the biofilm formation. The results showed 0.5 mmol L-1 ferric chloride could enhance the biofilm formation and strengthen the antifungal effect of B4, indicating that there was a positive relationship between the growth of biofilm and its biocontrol effect. The enhanced biofilm had a certain biocontrol effect on different fruit, including peach, loquat, Kyoho grape and cherry tomato. Furthermore, the expression of degU and tasA was affected by metal ion treatment, which meant the genes might be essential for the biofilm formation of B4. Our findings suggested that biofilm of B. amyloliquefaciens played an essential role in the process of biocontrol and it might be a novel strategy for managing postharvest fruit decay.
Assuntos
Bacillus amyloliquefaciens , Solanum lycopersicum , Antifúngicos/farmacologia , Bacillus amyloliquefaciens/genética , Biofilmes , Frutas/microbiologiaRESUMO
Mesenchymal stem sells (MSCs) have received much attention in the field of bone tissue engineering due to their biological capability to differentiate into osteogenic lineage cells. Hypoxia-inducible factor 1alpha (HIF-1α) plays an important role in the MSC-related bone regeneration during hypoxia, while core binding factor alpha 1 (Cbfα1) is a transcription regulator that is involved in the chondrocyte differentiation and ossification. In the present study, we investigated the effects of hypoxia on biological capability of MSCs. MSCs were isolated from adult rabbit bone marrow, and were cultured in vitro under normoxia (air with 5% CO(2)) or hypoxia (5% CO(2) and 95% N(2)). The proliferation of MSCs, alkaline phosphatase (ALP) activity, and production of collagens type I and type III (Col I/III) were examined. The expression levels of HIF-1α and Cbfα1 were measured by real-time PCR and western blot analyses. We found that hypoxia significantly induced the proliferation of MSCs and increased ALP activity and the production of Col I/III. Moreover, hypoxia increased the expression of Cbfα1 mRNA after 12 h, whereas the expression of HIF-1α mRNA was increased after 1 h of hypoxia. Knockdown of HIF-1α expression with a small interfering RNA significantly increased the expression levels of Cbfα1 protein either under the normoxia or hypoxia condition. Our results indicate that hypoxia enhances MSCs to differentiate into osteogenic lineage cells and suggest that Cbfα1 may be negatively regulated by HIF-1α.
Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Animais , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , CoelhosRESUMO
Bacillus cereus ZH14 was previously found to produce a new type of antiviral ribonuclease, which was secreted into medium and active against tobacco mosaic virus. In order to enhance the ribonuclease production, in this study the optimization of culture conditions using response surface methodology was done. The fermentation variables including culture temperature, initial pH, inoculum size, sucrose, yeast extract, MgSO(4).7H(2)O, and KNO(3) were considered for selection of significant ones by using the Plackett-Burman design, and four significant variables (sucrose, yeast extract, MgSO(4).7H(2)O, and KNO(3)) were further optimized by a 2(4) factorial central composite design. The optimal combination of the medium constituents for maximum ribonuclease production was determined as 8.50 g/l sucrose, 9.30 g/l yeast extract, 2.00 g/l MgSO(4).7H(2)O, and 0.62 g/l KNO(3). The enzyme activity was increased by 60%. This study will be helpful to the future commercial development of the new bacteria-based antiviral ribonuclease fermentation process.
Assuntos
Bacillus cereus/enzimologia , Proteínas de Bactérias/biossíntese , Técnicas de Cultura de Células/métodos , Fermentação , Ribonucleases/biossíntese , Bacillus cereus/crescimento & desenvolvimento , Meios de Cultura , Análise Multivariada , Análise de Regressão , Ribonucleases/isolamento & purificação , Vírus do Mosaico do TabacoRESUMO
A novel exopolysaccharide (EPS) from Paenibacillus polymyxa PYQ1 was extracted, well purified and characterized. This EPS was homogeneous glucomannan-type polysaccharide with the average molecular weight of 4.38 × 106 Da. Structural characterization indicated that the monosaccharides of EPS were pyranoses connected by ß-glycosidic linkages. Furthermore, our results showed the protective benefits of EPS against UVC induced cytotoxicity in HaCaT cells through scavenging excessive reactive oxygen species, mitigating the decrease of mitochondrial membrane potential, improving catalase activity and maintaining membrane integrity. Taken together, this study qualified EPS from P. polymyxa PYQ1 was a promising natural polymer which worth further investigation as a skin-care agent.
Assuntos
Citoproteção/efeitos dos fármacos , Paenibacillus polymyxa/metabolismo , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/farmacologia , Raios Ultravioleta/efeitos adversos , Catalase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Peso Molecular , Monossacarídeos/análise , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Espécies Reativas de Oxigênio/metabolismoRESUMO
Head and neck squamous cell carcinomas (HNSCCs) harbor a subset of cells that are CD44(+) and present with malignancy and radiotherapy resistance. As a key regulator of self-renewal, Nanog expression not only determines cell fate in pluripotent cells but also mediates tumorigenesis in cancer cells; thus, we examined the role of Nanog in CD44(+) HNSCC. Three HNSCC cell lines, tumor xenografts, and patient tumors were examined. Nanog levels were significantly higher in CD44(+) HNSCC spheroids than in CD44(-) spheroids, and further increased when grown as spheroids to enrich for CSCs. CD44(+) spheroids showed a 3.4-7.5-fold increase in migration and invasion compared with CD44(-) spheroids and were resistant to radiation therapy, which was reversed by inhibiting Nanog. Nanog knockdown also decreased spheroid formation by 66.5-68.8%. Moreover, a phosphokinase array identified upregulated ERK1/2 signaling in CD44(+) HNSCC cells compared with that in CD44(-) cells. ERK1/2 signaling was found to regulate Nanog expression, aiding tumor progression, metastasis, and radiotherapy resistance. In xenograft models, the combination of radiation and Nanog or ERK1/2 inhibition inhibited tumor growth by 75.6% and 79.1%, respectively. In lung metastasis models, CD44(+) cells injected into the tail vein of mice led to significantly more lung metastases and higher Nanog expression level compared with that by ERK1/2-knockdown CD44(+) cells. Finally, in tumor tissues, CD44 and Nanog expression levels were correlated with tumorigenesis in HNSCC patients. Thus, targeting Nanog and the ERK1/2 signaling pathway may prevent or reverse CSC phenotypes and epithelial-mesenchymal transition that drive tumor progression, metastasis, and radiotherapy resistance in HNSCC.