Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1389397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633665

RESUMO

Insufficient initial vascularization plays a pivotal role in the ineffectiveness of bone biomaterials for treating bone defects. Consequently, enhancing the angiogenic properties of bone repair biomaterials holds immense importance in augmenting the efficacy of bone regeneration. In this context, we have successfully engineered a composite hydrogel capable of promoting vascularization in the process of bone regeneration. To achieve this, the researchers first prepared an aminated bioactive glass containing zinc ions (AZnBg), and hyaluronic acid contains aldehyde groups (HA-CHO). The composite hydrogel was formed by combining AZnBg with gelatin methacryloyl (GelMA) and HA-CHO through Schiff base bonding. This composite hydrogel has good biocompatibility. In addition, the composite hydrogel exhibited significant osteoinductive activity, promoting the activity of ALP, the formation of calcium nodules, and the expression of osteogenic genes. Notably, the hydrogel also promoted umbilical vein endothelial cell migration as well as tube formation by releasing zinc ions. The results of in vivo study demonstrated that implantation of the composite hydrogel in the bone defect of the distal femur of rats could effectively stimulate bone generation and the development of new blood vessels, thus accelerating the bone healing process. In conclusion, the combining zinc-containing bioactive glass with hydrogels can effectively promote bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.

2.
Mater Today Bio ; 25: 100956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38322657

RESUMO

The rational design of multifunctional biomaterials with hierarchical porous structure and on-demand biological activity is of great consequence for bone tissue engineering (BTE) in the contemporary world. The advanced combination of trace element cerium ions (Ce3+) with bone repair materials makes the composite material capable of promoting angiogenesis and enhancing osteoblast activity. Herein, a living and phosphorylated injectable porous hydrogel microsphere (P-GelMA-Ce@BMSCs) is constructed by microfluidic technology and coordination reaction with metal ion ligands while loaded with exogenous BMSCs. Exogenous stem cells can adhere to and proliferate on hydrogel microspheres, thus promoting cell-extracellular matrix (ECM) and cell-cell interactions. The active ingredient Ce3+ promotes the proliferation, osteogenic differentiation of rat BMSCs, and angiogenesis of endotheliocytes by promoting mineral deposition, osteogenic gene expression, and VEGF secretion. The enhancement of osteogenesis and improvement of angiogenesis of the P-GelMA-Ce scaffold is mainly associated with the activation of the Wnt/ß-catenin pathway. This study could provide novel and meaningful insights for treating bone defects with biofunctional materials on the basis of metal ions.

3.
Front Bioeng Biotechnol ; 11: 1291969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312513

RESUMO

The bone defect caused by fracture, bone tumor, infection, and other causes is not only a problematic point in clinical treatment but also one of the hot issues in current research. The development of bone tissue engineering provides a new way to repair bone defects. Many animal experimental and rising clinical application studies have shown their excellent application prospects. The construction of rapid vascularization of tissue-engineered bone is the main bottleneck and critical factor in repairing bone defects. The rapid establishment of vascular networks early after biomaterial implantation can provide sufficient nutrients and transport metabolites. If the slow formation of the local vascular network results in a lack of blood supply, the osteogenesis process will be delayed or even unable to form new bone. The researchers modified the scaffold material by changing the physical and chemical properties of the scaffold material, loading the growth factor sustained release system, and combining it with trace elements so that it can promote early angiogenesis in the process of induced bone regeneration, which is beneficial to the whole process of bone regeneration. This article reviews the local vascular microenvironment in the process of bone defect repair and the current methods of improving scaffold materials and promoting vascularization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa