Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 502, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36289462

RESUMO

BACKGROUND: Soil salinization has become a global problem restricting the seed yield and quality of crops, including wheat (Triticum aestivum L.). Salinity significantly alters plant morphology and severely disrupts physiological homeostasis. Salt tolerance of wheat has been widely studied whereas core ion transporters responsive to salt stress remain elusive. RESULTS: In this study, the wheat seedlings were subjected to salinity toxicity for morpho-physiological and transcriptomic analysis of wheat salt tolerance. There was a inversely proportional relationship between salt concentrations and morpho-physiological parameters. Under the condition of 100 mM NaCl, the H2O2, O2-, MDA content and membrane permeability were significantly increased whereas the chlorophyll content was markedly decreased. Under salt stress, a larger proportion of Na+ was partitioned in the roots than in the shoots, which had a lower Na+/K+ ratio and proline content. Salt stress also obviously affected the homeostasis of other cations. Genome-wide transcriptomic analysis showed that a total of 2,807 and 5,570 differentially expressed genes (DEGs) were identified in the shoots and roots, respectively. Functionality analysis showed that these DEGs were mainly enriched in the KEGG pathways related to carbon metabolism, phenylalanine, and amino acid biosynthesis, and were primarily enriched in the GO terms involving proline metabolism and redox processes. The Na+ transporter genes were upregulated under salt stress, which repressed the gene expression of the K+ transporters. Salt stress also significantly elevated the expression of the genes involved in osmoregulation substances biosynthesis, and obviously affected the expression profiling of other cation transporters. Co-expression network analysis identified TaNHX6-D5/TaNHX4-B7 and TaP5CS2-B3 potentially as core members regulating wheat salt tolerance. CONCLUSIONS: These results might help us fully understand the morpho-physiological and molecular responses of wheat seedlings to salt stress, and provide elite genetic resources for the genetic modification of wheat salt tolerance.


Assuntos
Plântula , Triticum , Triticum/metabolismo , Plântula/genética , Plântula/metabolismo , Osmorregulação , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Estresse Salino/genética , Salinidade , Sódio/metabolismo , Clorofila/metabolismo , Prolina/metabolismo , Carbono/metabolismo , Nutrientes , Solo , Fenilalanina/metabolismo , Aminoácidos/metabolismo , Estresse Fisiológico/genética
2.
J Exp Bot ; 73(22): 7516-7537, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36063365

RESUMO

Cadmium (Cd) is a highly toxic heavy metal that readily enters cereals, such as wheat, via the roots and is translocated to the shoots and grains, thereby posing high risks to human health. However, the vast and complex genome of allohexaploid wheat makes it challenging to understand Cd resistance and accumulation. In this study, a Cd-resistant cultivar of wheat, 'ZM1860', and a Cd-sensitive cultivar, 'ZM32', selected from a panel of 442 accessions, exhibited significantly different plant resistance and grain accumulation. We performed an integrated comparative analysis of the morpho-physiological traits, ionomic and phytohormone profiles, genomic variations, transcriptomic landscapes, and gene functionality in order to identify the mechanisms underlying these differences. Under Cd toxicity, 'ZM1860' outperformed 'ZM32', which showed more severe leaf chlorosis, poorer root architecture, higher accumulation of reactive oxygen species, and disordered phytohormone homeostasis. Ionomics showed that 'ZM32' had a higher root-to-shoot translocation coefficient of Cd and accumulated more Cd in the grains than 'ZM1860'. Whole-genome re-sequencing (WGS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport between the two genotypes. Combined ionomics, transcriptomics, and functional gene analysis identified the plasma membrane-localized heavy metal ATPase TaHMA2b-7A as a crucial Cd exporter regulating long-distance Cd translocation in wheat. WGS- and PCR-based analysis of sequence polymorphisms revealed a 25-bp InDel site in the promoter region of TaHMA2b-7A, and this was probably responsible for the differential expression. Our multiomics approach thus enabled the identification of a core transporter involved in long-distance Cd translocation in wheat, and it may provide an elite genetic resource for improving plant Cd resistance and reducing grain Cd accumulation in wheat and other cereal crops.


Assuntos
Cádmio , Triticum , Multiômica , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa