Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
1.
Cell ; 184(5): 1133-1134, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667365

RESUMO

The de novo domestication has the potential to rapidly capitalize on desirable traits of wild plants. In this issue of Cell, Yu et al. report a route of de novo domestication of an allotetraploid rice, heralding the creation of a novel staple food crop to support global food security.


Assuntos
Domesticação , Oryza , Produtos Agrícolas/genética , Edição de Genes , Oryza/genética
2.
Cell ; 167(2): 313-324, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716505

RESUMO

As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Produtos Agrícolas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Cloroplastos/enzimologia , Resposta ao Choque Frio , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Secas , Estresse do Retículo Endoplasmático , Metabolismo Energético , Abastecimento de Alimentos , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Mitocôndrias/enzimologia , Pressão Osmótica , Peroxissomos/enzimologia , Proteínas Serina-Treonina Quinases/genética , Salinidade , Transdução de Sinais , Estresse Fisiológico/genética
3.
Nat Rev Mol Cell Biol ; 19(8): 489-506, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29784956

RESUMO

DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so-called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions.


Assuntos
Arabidopsis/genética , Metilação de DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica de Plantas/genética , Animais , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/genética , Humanos , Proteínas Nucleares/metabolismo , Plantas/genética
4.
Nat Rev Genet ; 23(2): 104-119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34561623

RESUMO

Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.


Assuntos
Produtos Agrícolas/genética , Secas , Ecossistema , Plantas/genética , Salinidade , Estresse Fisiológico/genética , Temperatura , Atmosfera/química , Dióxido de Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigênio/metabolismo , Plantas/metabolismo , Solo/química
5.
Proc Natl Acad Sci U S A ; 121(22): e2320468121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768356

RESUMO

Spontaneous gain or loss of DNA methylation occurs in plant and animal genomes, and DNA methylation changes can lead to meiotically stable epialleles that generate heritable phenotypic diversity. However, it is unclear whether transgenerational epigenetic stability may be regulated by any cellular factors. Here, we examined spontaneously occurring variations in DNA methylation in wild-type and ros1 mutant Arabidopsis plants that were propagated for ten generations from single-seed descent. We found that the ros1 mutant, which is defective in active DNA demethylation, showed an increased transgenerational epimutation rate. The ros1 mutation led to more spontaneously gained methylation than lost methylation at individual cytosines, compared to the wild type which had similar numbers of spontaneously gained and lost methylation cytosines. Consistently, transgenerational differentially methylated regions were also biased toward hypermethylation in the ros1 mutant. Our results reveal a genetic contribution of the ROS1 DNA demethylase to transgenerational epigenetic stability and suggest that ROS1 may have an unexpected surveillance function in preventing transgenerational DNA methylation increases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Desmetilação do DNA , Metilação de DNA , Epigênese Genética , Mutação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas Nucleares
6.
Proc Natl Acad Sci U S A ; 121(3): e2308812120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190540

RESUMO

Aging in an individual refers to the temporal change, mostly decline, in the body's ability to meet physiological demands. Biological age (BA) is a biomarker of chronological aging and can be used to stratify populations to predict certain age-related chronic diseases. BA can be predicted from biomedical features such as brain MRI, retinal, or facial images, but the inherent heterogeneity in the aging process limits the usefulness of BA predicted from individual body systems. In this paper, we developed a multimodal Transformer-based architecture with cross-attention which was able to combine facial, tongue, and retinal images to estimate BA. We trained our model using facial, tongue, and retinal images from 11,223 healthy subjects and demonstrated that using a fusion of the three image modalities achieved the most accurate BA predictions. We validated our approach on a test population of 2,840 individuals with six chronic diseases and obtained significant difference between chronological age and BA (AgeDiff) than that of healthy subjects. We showed that AgeDiff has the potential to be utilized as a standalone biomarker or conjunctively alongside other known factors for risk stratification and progression prediction of chronic diseases. Our results therefore highlight the feasibility of using multimodal images to estimate and interrogate the aging process.


Assuntos
Envelhecimento , Fontes de Energia Elétrica , Humanos , Face , Biomarcadores , Doença Crônica
7.
Plant Cell ; 35(1): 201-217, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36149287

RESUMO

Salt stress simultaneously causes ionic toxicity, osmotic stress, and oxidative stress, which directly impact plant growth and development. Plants have developed numerous strategies to adapt to saline environments. Whereas some of these strategies have been investigated and exploited for crop improvement, much remains to be understood, including how salt stress is perceived by plants and how plants coordinate effective responses to the stress. It is, however, clear that the plant cell wall is the first contact point between external salt and the plant. In this context, significant advances in our understanding of halotropism, cell wall synthesis, and integrity surveillance, as well as salt-related cytoskeletal rearrangements, have been achieved. Indeed, molecular mechanisms underpinning some of these processes have recently been elucidated. In this review, we aim to provide insights into how plants respond and adapt to salt stress, with a special focus on primary cell wall biology in the model plant Arabidopsis thaliana.


Assuntos
Parede Celular , Estresse Salino , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo , Estresse Salino/fisiologia
8.
Mol Cell ; 69(1): 100-112.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290610

RESUMO

As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Estresse Fisiológico
9.
Mol Cell Proteomics ; : 100804, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901673

RESUMO

Osmotic stress significantly hampers plant growth and crop yields, emphasizing the need for a thorough comprehension of the underlying molecular responses. Previous research has demonstrated that osmotic stress rapidly induces calcium influx and signaling, along with the activation of a specific subset of protein kinases, notably the Raf-SnRK2 kinase cascades within minutes. However, the intricate interplay between calcium signaling and the activation of RAF-SnRK2 kinase cascades remains elusive. Here in this study, we discovered that Raf-like protein (RAF) kinases undergo hyperphosphorylation in response to osmotic shocks. Intriguingly, treatment with the calcium chelator EGTA robustly activates RAF-SnRK2 cascades, mirroring the effects of osmotic treatment. Utilizing high-throughput DIA-based phosphoproteomics, we unveiled the global impact of EGTA on protein phosphorylation. Beyond the activation of RAFs and sucrose non-fermenting-1-related protein kinase 2s (SnRK2s), EGTA treatment also activates mitogen-activated protein kinase (MAPKs) cascades, Calcium-dependent protein kinases (CDPKs), and receptor-like protein kinases, etc. Through overlapping assays, we identified potential roles of mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and receptor-like protein kinases in the osmotic-stress-induced activation of RAF-SnRK2 cascades. Our findings illuminate the regulation of phosphorylation and cellular events by Ca2+ signaling, offering insights into the (exocellular) Ca2+ deprivation during early hyperosmolality sensing and signaling.

10.
Plant Physiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588029

RESUMO

Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into four broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of scRNA-seq with exogenous application of 6-benzylaminopurine, we delineated five salt gland development-associated sub-clusters and defined salt gland specific differentiation trajectories from sub-clusters 8, 4, or 6 to sub-cluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.

11.
Plant Physiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888999

RESUMO

Histone post-translational modifications (PTMs), such as acetylation and recently identified lysine 2-hydroxyisobutyrylation (Khib), act as active epigenomic marks in plants. SANT domain-containing proteins SANT1, SANT2, SANT3 and SANT4 (SANT1/2/3/4), derived from PIF/Harbinger transposases, form a complex with HISTONE DEACETYLASE 6 (HDA6) to regulate gene expression via histone deacetylation. However, whether SANT1/2/3/4 coordinate different types of PTMs to regulate transcription and mediate responses to specific stresses in plants remains unclear. Here, in addition to modulating histone deacetylation, we found that SANT1/2/3/4 proteins acted like HDA6 or HDA9 in regulating the removal of histone Khib in Arabidopsis (Arabidopsis thaliana). Histone H3 lysine acetylation (H3KAc) and histone Khib were coordinated by SANT1/2/3/4 to regulate gene expression, with H3KAc playing a predominant role and Khib acting complementarily to H3KAc. SANT1/2/3/4 mutation significantly increased the expression of heat-inducible genes with concurrent change of H3KAc levels under normal and heat stress conditions, resulting in enhanced thermotolerance. This study revealed the critical roles of Harbinger transposon-derived SANT domain-containing proteins in transcriptional regulation by coordinating different types of histone PTMs and in the regulation of plant thermotolerance by mediating histone acetylation modification.

12.
Plant Cell ; 34(5): 2001-2018, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35099557

RESUMO

Flowering is a critical agricultural trait that substantially affects tomato fruit yield. Although drought stress influences flowering time, the molecular mechanism underlying drought-regulated flowering in tomato remains elusive. In this study, we demonstrated that loss of function of tomato OPEN STOMATA 1 (SlOST1), a protein kinase essential for abscisic acid (ABA) signaling and abiotic stress responses, lowers the tolerance of tomato plants to drought stress. slost1 mutants also exhibited a late flowering phenotype under both normal and drought stress conditions. We also established that SlOST1 directly interacts with and phosphorylates the NAC (NAM, ATAF and CUC)-type transcription factor VASCULAR PLANT ONE-ZINC FINGER 1 (SlVOZ1), at residue serine 67, thereby enhancing its stability and nuclear translocation in an ABA-dependent manner. Moreover, we uncovered several SlVOZ1 binding motifs from DNA affinity purification sequencing analyses and revealed that SlVOZ1 can directly bind to the promoter of the major flowering-integrator gene SINGLE FLOWER TRUSS to promote tomato flowering transition in response to drought. Collectively, our data uncover the essential role of the SlOST1-SlVOZ1 module in regulating flowering in response to drought stress in tomato and offer insights into a novel strategy to balance drought stress response and flowering.


Assuntos
Solanum lycopersicum , Ácido Abscísico/metabolismo , Secas , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/metabolismo , Proteínas Quinases/metabolismo
13.
EMBO J ; 39(10): e103256, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32134151

RESUMO

Domestication has resulted in reduced salt tolerance in tomato. To identify the genetic components causing this deficiency, we performed a genome-wide association study (GWAS) for root Na+ /K+ ratio in a population consisting of 369 tomato accessions with large natural variations. The most significant variations associated with root Na+ /K+ ratio were identified within the gene SlHAK20 encoding a member of the clade IV HAK/KUP/KT transporters. We further found that SlHAK20 transports Na+ and K+ and regulates Na+ and K+ homeostasis under salt stress conditions. A variation in the coding sequence of SlHAK20 was found to be the causative variant associated with Na+ /K+ ratio and confer salt tolerance in tomato. Knockout mutations in tomato SlHAK20 and the rice homologous genes resulted in hypersensitivity to salt stress. Together, our study uncovered a previously unknown molecular mechanism of salt tolerance responsible for the deficiency in salt tolerance in cultivated tomato varieties. Our findings provide critical information for molecular breeding to improve salt tolerance in tomato and other crops.


Assuntos
Mutação com Perda de Função , Tolerância ao Sal , ATPase Trocadora de Sódio-Potássio/genética , Solanum lycopersicum/crescimento & desenvolvimento , Embaralhamento de DNA , Domesticação , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Solanum lycopersicum/genética , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
EMBO J ; 39(2): e102602, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31802519

RESUMO

Plants establish mutualistic associations with beneficial microbes while deploying the immune system to defend against pathogenic ones. Little is known about the interplay between mutualism and immunity and the mediator molecules enabling such crosstalk. Here, we show that plants respond differentially to a volatile bacterial compound through integral modulation of the immune system and the phosphate-starvation response (PSR) system, resulting in either mutualism or immunity. We found that exposure of Arabidopsis thaliana to a known plant growth-promoting rhizobacterium can unexpectedly have either beneficial or deleterious effects to plants. The beneficial-to-deleterious transition is dependent on availability of phosphate to the plants and is mediated by diacetyl, a bacterial volatile compound. Under phosphate-sufficient conditions, diacetyl partially suppresses plant production of reactive oxygen species (ROS) and enhances symbiont colonization without compromising disease resistance. Under phosphate-deficient conditions, diacetyl enhances phytohormone-mediated immunity and consequently causes plant hyper-sensitivity to phosphate deficiency. Therefore, diacetyl affects the type of relation between plant hosts and certain rhizobacteria in a way that depends on the plant's phosphate-starvation response system and phytohormone-mediated immunity.


Assuntos
Arabidopsis/imunologia , Diacetil/farmacologia , Fosfatos/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Raízes de Plantas/imunologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Bactérias/imunologia , Bactérias/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Simbiose , Compostos Orgânicos Voláteis/farmacologia
15.
Plant Biotechnol J ; 22(7): 1981-1988, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38425137

RESUMO

Succulents, valued for their drought tolerance and ornamental appeal, are important in the floriculture market. However, only a handful of succulent species can be genetically transformed, making it difficult to improve these plants through genetic engineering. In this study, we adapted the recently developed cut-dip-budding (CDB) gene delivery system to transform three previously recalcitrant succulent varieties - the dicotyledonous Kalanchoe blossfeldiana and Crassula arborescens and the monocotyledonous Sansevieria trifasciata. Capitalizing on the robust ability of cut leaves to regenerate shoots, these plants were successfully transformed by directly infecting cut leaf segments with the Agrobacterium rhizogenes strain K599. The transformation efficiencies were approximately 74%, 5% and 3.9%-7.8%, respectively, for K. blossfeldiana and C. arborescens and S. trifasciata. Using this modified CDB method to deliver the CRISPR/Cas9 construct, gene editing efficiency in K. blossfeldiana at the PDS locus was approximately 70%. Our findings suggest that succulents with shoot regeneration ability from cut leaves can be genetically transformed using the CDB method, thus opening up an avenue for genetic engineering of these plants.


Assuntos
Agrobacterium , Edição de Genes , Plantas Geneticamente Modificadas , Transformação Genética , Edição de Genes/métodos , Agrobacterium/genética , Plantas Geneticamente Modificadas/genética , Sistemas CRISPR-Cas/genética , Folhas de Planta/genética , Kalanchoe/genética , Técnicas de Transferência de Genes
16.
Plant Biotechnol J ; 22(2): 379-385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822083

RESUMO

The CRISPR/Cas type V-I is a family of programmable nuclease systems that prefers a T-rich protospacer adjacent motif (PAM) and is guided by a short crRNA. In this study, the genome-editing application of Cas12i3, a type V-I family endonuclease, was characterized in rice. We developed a CRIPSR/Cas12i3-based Multiplex direct repeats (DR)-spacer Array Genome Editing (iMAGE) system that was efficient in editing various genes in rice. Interestingly, iMAGE produced chromosomal structural variations with a higher frequency than CRISPR/Cas9. In addition, we developed base editors using deactivated Cas12i3 and generated herbicide-resistant rice plants using the base editors. These CRIPSR/Cas12i3-based genome editing systems will facilitate precision molecular breeding in plants.


Assuntos
Edição de Genes , Oryza , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Oryza/genética , Plantas/genética , Endonucleases/genética
17.
New Phytol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798233

RESUMO

Gene silencing is crucial in crop breeding for desired trait development. RNA interference (RNAi) has been used widely but is limited by ectopic expression of transgenes and genetic instability. Introducing an upstream start codon (uATG) into the 5'untranslated region (5'UTR) of a target gene may 'silence' the target gene by inhibiting protein translation from the primary start codon (pATG). Here, we report an efficient gene silencing method by introducing a tailor-designed uATG-containing element (ATGE) into the 5'UTR of genes in plants, occupying the original start site to act as a new pATG. Using base editing to introduce new uATGs failed to silence two of the tested three rice genes, indicating complex regulatory mechanisms. Precisely inserting an ATGE adjacent to pATG achieved significant target protein downregulation. Through extensive optimization, we demonstrated this strategy substantially and consistently downregulated target protein expression. By designing a bidirectional multifunctional ATGE4, we enabled tunable knockdown from 19% to 89% and observed expected phenotypes. Introducing ATGE into Waxy, which regulates starch synthesis, generated grains with lower amylose, revealing the value for crop breeding. Together, we have developed a programmable and robust method to knock down gene expression in plants, with potential for biological mechanism exploration and crop enhancement.

18.
Plant Physiol ; 191(2): 1365-1382, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36427205

RESUMO

Root growth and development depend on continuous cell division and differentiation in root tips. In these processes, reactive oxygen species (ROS) play a critical role as signaling molecules. However, few ROS signaling regulators have been identified. In this study, we found knockdown of a syntaxin gene, SYNTAXIN OF PLANTS81 in Arabidopsis thaliana (AtSYP81) resulted in a severe reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. Subsequently, we found AtSYP81 was highly expressed in roots and localized on the endoplasmic reticulum (ER). Interestingly, the reduced expression of AtSYP81 conferred a decreased number of peroxisomes in root meristem cells, raising a possibility that AtSYP81 regulates root development through peroxisome-mediated ROS production. Further transcriptome analysis revealed that class III peroxidases, which are responsible for intracellular ROS homeostasis, showed significantly changed expression in the atsyp81 mutants and AtSYP81 overexpression lines, adding evidence of the regulatory role of AtSYP81 in ROS signaling. Accordingly, rescuing the decreased ROS level via applying ROS donors effectively restored the defects in root meristem activity and SCN identity in the atsyp81 mutants. APETALA2 (AP2) transcription factors PLETHORA1 and 2 (PLT1 and PLT2) were then established as the downstream effectors in this pathway, while potential crosstalk between ROS signaling and auxin signaling was also indicated. Taken together, our findings suggest that AtSYP81 regulates root meristem activity and maintains root SCN identity by controlling peroxisome- and peroxidase-mediated ROS homeostasis, thus both broadening and deepening our understanding of the biological roles of SNARE proteins and ROS signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismo , Nicho de Células-Tronco/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo
19.
Theor Appl Genet ; 137(1): 15, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38184817

RESUMO

Solanum americanum serves as a promising source of resistance genes against potato late blight and is considered as a leafy vegetable for complementary food and nutrition. The limited availability of high-quality genome assemblies and gene annotations has hindered the exploration and exploitation of stress-resistance genes in S. americanum. Here, we present a chromosome-level genome assembly of a thermotolerant S. americanum ecotype and identify a crucial heat-inducible transcription factor gene, SaHSF17, essential for heat tolerance. The CRISPR/Cas9 system-mediated knockout of SaHSF17 results in remarkably reduced thermotolerance in S. americanum, exhibiting a significant suppression of multiple HSP gene expressions under heat treatment. Furthermore, our transcriptome analysis and anthocyanin component investigation of fruits indicated that delphinidins are the major anthocyanins accumulated in the mature dark-purple fruits. The accumulation of delphinidins and other pigment components during fruit ripening in S. americanum coincides with the transcriptional regulation of key genes, particularly the F3'5'H and F3'H genes, in the anthocyanin biosynthesis pathway. By integrating existing knowledge, the development of this high-quality reference genome for S. americanum will facilitate the identification and utilization of novel abiotic and biotic stress-resistance genes for improvement of Solanaceae and other crops.


Assuntos
Solanum , Termotolerância , Antocianinas , Frutas/genética , Termotolerância/genética , Solanum/genética , Edição de Genes , Cromossomos
20.
Cell ; 137(3): 498-508, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19410546

RESUMO

DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Argonautas , Sítios de Ligação , DNA de Plantas/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa