RESUMO
As crucial enzymes in the lipid metabolic network, long-chain acyl-CoA synthases (LACSs) are members of the acyl-activated enzyme superfamily and play a crucial role in epidermal wax synthesis, plant lipid anabolic metabolism, and stress tolerance. In this study, 11 pecan LACS genes were identified and categorized into five groups and located on nine chromosomes. The significant degree of conservation in the AtLACS and CiLACS protein sequences was demonstrated by multiple sequence alignment and conserved motif analysis. Cis-acting element analysis identified numerous stress-responsive and hormone-inducible elements in the promoter regions of CiLACS genes. The expression levels of CiLACS9 and CiLACS9-1 were considerably up-regulated under salt and drought stress, according to the qRT-RCR study. Treatment with ABA also led to increased expression levels of CiLACS1, CiLACS1-1, CiLACS2, and CiLACS9-1. Notably, CiLACS4, CiLACS4-1, CiLACS9, and CiLACS9-1 exhibited peak expression levels at 135 days after anthesis and are likely to have been crucial in the accumulation of seed kernel oil. Moreover, the CiLACS9 gene was shown to be located in the cytoplasm. These findings offer a theoretical framework for clarifying the roles of LACS genes in the processes of pecan kernel oil synthesis and response to abiotic stressors.
Assuntos
Carya , Carya/genética , Sequência de Aminoácidos , Lipídeos , Ligases/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genéticaRESUMO
Eukaryotic genes can be classified into intronless (no introns), intron-poor (three or fewer introns per gene) or intron-rich. Early eukaryotic genes were mostly intron-rich, and their alternative splicing into multiple transcripts, giving rise to different proteins, might have played pivotal roles in adaptation and evolution. Interestingly, extant plant genomes contain many gene families with one or sometimes few sub-families with genes that are intron-poor or intronless, and it remains unknown when and how these intron-poor or intronless genes have originated and evolved, and what their possible functions are. In this study, we identified 33 such gene families that contained intronless and intron-poor sub-families. Intronless genes seemed to have first emerged in early land plant evolution, while intron-poor sub-families seemed first to have appeared in green algae. In contrast to intron-rich genes, intronless genes in intron-poor sub-families occurred later, and were subject to stronger functional constraints. Based on RNA-seq analyses in Arabidopsis and rice, intronless or intron-poor genes in AP2, EF-hand_7, bZIP, FAD_binding_4, STE_STE11, CAMK_CAMKL-CHK1 and C2 gene families were more likely to play a role in response to drought and salt stress, compared with intron-rich genes in the same gene families, whereas intronless genes in the B_lectin and S_locus_glycop gene family were more likely to participate in epigenetic processes and plant development. Understanding the origin and evolutionary trajectory, as well as the potential functions, of intronless and intron-poor sub-families provides further insight into plant genome evolution and the functional divergence of genes.
Assuntos
Arabidopsis/genética , Evolução Molecular , Genes de Plantas/genética , Íntrons/genética , Desidratação , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Filogenia , Estresse Salino , Seleção Genética/genéticaRESUMO
BACKGROUND: GRAS genes formed one of the important transcription factor gene families in plants, had been identified in several plant species. The family genes were involved in plant growth, development, and stress resistance. However, the comparative analysis of GRAS genes in Rosaceae species was insufficient. RESULTS: In this study, a total of 333 GRAS genes were identified in six Rosaceae species, including 51 in strawberry (Fragaria vesca), 78 in apple (Malus domestica), 41 in black raspberry (Rubus occidentalis), 59 in European pear (Pyrus communis), 56 in Chinese rose (Rosa chinensis), and 48 in peach (Prunus persica). Motif analysis showed the VHIID domain, SAW motif, LR I region, and PFYRE motif were considerably conserved in the six Rosaceae species. All GRAS genes were divided into 10 subgroups according to phylogenetic analysis. A total of 15 species-specific duplicated clades and 3 lineage-specific duplicated clades were identified in six Rosaceae species. Chromosomal localization presented the uneven distribution of GRAS genes in six Rosaceae species. Duplication events contributed to the expression of the GRAS genes, and Ka/Ks analysis suggested the purification selection as a major force during the evolution process in six Rosaceae species. Cis-acting elements and GO analysis revealed that most of the GRAS genes were associated with various environmental stress in six Rosaceae species. Coexpression network analysis showed the mutual regulatory relationship between GRAS and bZIP genes, suggesting the ability of the GRAS gene to regulate abiotic stress in woodland strawberry. The expression pattern elucidated the transcriptional levels of FvGRAS genes in various tissues and the drought and salt stress in woodland strawberry, which were verified by RT-qPCR analysis. CONCLUSIONS: The evolution and functional analysis of GRAS genes provided insights into the further understanding of GRAS genes on the abiotic stress of Rosaceae species.
Assuntos
Fragaria , Malus , Pyrus , Rosaceae , Rosaceae/genética , Rosaceae/metabolismo , Filogenia , Genoma de Planta , Evolução Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/metabolismo , Fragaria/genética , Fragaria/metabolismo , Malus/genética , Malus/metabolismoRESUMO
BACKGROUND: Calcium (Ca2+) serves as a ubiquitous second messenger and plays a pivotal role in signal transduction. Calcineurin B-like proteins (CBLs) are plant-specific Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to transmit Ca2+ signals. CBL-CIPK complexes have been reported to play pivotal roles in plant development and response to drought stress; however, limited information is available about the CBL and CIPK genes in pecan, an important nut crop. RESULTS: In the present study, a total of 9 CBL and 30 CIPK genes were identified from the pecan genome and divided into four and five clades based on phylogeny, respectively. Gene structure and distribution of conserved sequence motif analysis suggested that family members in the same clade commonly exhibited similar exon-intron structures and motif compositions. The segmental duplication events contributed largely to the expansion of pecan CBL and CIPK gene families, and Ka/Ks values revealed that all of them experienced strong negative selection. Phylogenetic analysis of CIPK proteins from 14 plant species revealed that CIPKs in the intron-poor clade originated in seed plants. Tissue-specific expression profiles of CiCBLs and CiCIPKs were analysed, presenting functional diversity. Expression profiles derived from RNA-Seq revealed distinct expression patterns of CiCBLs and CiCIPKs under drought treatment in pecan. Moreover, coexpression network analysis helped to elucidate the relationships between these genes and identify potential candidates for the regulation of drought response, which were verified by qRT-PCR analysis. CONCLUSIONS: The characterization and analysis of CBL and CIPK genes in pecan genome could provide a basis for further functional analysis of CiCBLs and CiCIPKs in the drought stress response of pecan.
Assuntos
Carya , Secas , Carya/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico/genéticaRESUMO
Nitrogen (N) is a major limiting factor for plant growth and crop production. The use of N fertilizer in forestry production is increasing each year, but the loss is substantial. Mastering the regulatory mechanisms of N uptake and transport is a key way to improve plant nitrogen use efficiency (NUE). However, this has rarely been studied in pecans. In this study, 10 AMT and 69 NRT gene family members were identified and systematically analyzed from the whole pecan genome using a bioinformatics approach, and the expression patterns of AMT and NRT genes and the uptake characteristics of NH4+ and NO3- in pecan were analyzed by aeroponic cultivation at varying NH4+/NO3- ratios (0/0, 0/100,25/75, 50/50, 75/25,100/0 as CK, T1, T2, T3, T4, and T5). The results showed that gene duplication was the main reason for the amplification of the AMT and NRT gene families in pecan, both of which experienced purifying selection. Based on qRT-PCR results, CiAMTs were primarily expressed in roots, and CiNRTs were majorly expressed in leaves, which were consistent with the distribution of pecan NH4+ and NO3- concentrations in the organs. The expression levels of CiAMTs and CiNRTs were mainly significantly upregulated under N deficiency and T4 treatment. Meanwhile, T4 treatment significantly increased the NH4+, NO3-, and NO2- concentrations as well as the Vmax and Km values of NH4+ and NO3- in pecans, and Vmax/Km indicated that pecan seedlings preferred to absorb NH4+. In summary, considering the single N source of T5, we suggested that the NH4+/NO3- ratio of 75:25 was more beneficial to improve the NUE of pecan, thus increasing pecan yield, which provides a theoretical basis for promoting the scale development of pecan and provides a basis for further identification of the functions of AMT and NRT genes in the N uptake and transport process of pecan.
Assuntos
Carya , Plântula , Plântula/metabolismo , Carya/genética , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Folhas de Planta/metabolismo , Nitratos/metabolismoRESUMO
Mitogen-activated protein kinases consist of three kinase modules composed of MPKs, MKKs, and MPKKKs. As members of the protein kinase (PK) superfamily, they are involved in various processes, such as developmental programs, cell division, hormonal progression, and signaling responses to biotic and abiotic stresses. In this study, a total of 18 MPKs and 10 MKKs were annotated on the pecan genome, all of which could be classified into four subgroups, respectively. The gene structures and conserved sequences of family members in the same branch were relatively similar. All MPK proteins had a conserved motif TxY, and D(L/I/V)K and VGTxxYMSPER existed in all MKK proteins. Duplication events contributed largely to the expansion of the pecan MPK and MKK gene families. Phylogenetic analysis of protein sequences from six plants indicated that species evolution occurred in pecan. Organ-specific expression profiles of MPK and MKK showed functional diversity. Ka/Ks values indicated that all genes with duplicated events underwent strong negative selection. Seven CiPawMPK and four CiPawMKK genes with high expression levels were screened by transcriptomic data from different organs, and these candidates were validated by qRT-PCR analysis of hormone-treated and stressed samples.
Assuntos
Carya , Filogenia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sequência de AminoácidosRESUMO
BACKGROUND: Protein kinases (PKs) play an important role in signaling cascades and are one of the largest and most conserved protein super families in plants. Despite their importance, the woodland strawberry (Fragaria vesca) kinome and expression patterns of PK genes remain to be characterized. RESULTS: Here, we report on the identification and classification of 954 Fragaria vesca PK genes, which were classified into nine groups and 124 gene families. These genes were distributed unevenly among the seven chromosomes, and the number of introns per gene varied from 0 to 47. Almost half of the putative PKs were predicted to localize to the nucleus and 24.6% were predicted to localize to the cell membrane. The expansion of the woodland strawberry PK gene family occurred via different duplication mechanisms and tandem duplicates occurred relatively late as compared to other duplication types. Moreover, we found that tandem and transposed duplicated PK gene pairs had undergone stronger diversifying selection and evolved relatively faster than WGD genes. The GO enrichment and transcriptome analysis implicates the involvement of strawberry PK genes in multiple biological processes and molecular functions in differential tissues, especially in pollens. Finally, 109 PKs, mostly the receptor-like kinases (RLKs), were found transcriptionally responsive to Botrytis cinerea infection. CONCLUSIONS: The findings of this research expand the understanding of the evolutionary dynamics of PK genes in plant species and provide a potential link between cell signaling pathways and pathogen attack.
Assuntos
Resistência à Doença , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas Quinases/genética , Transcriptoma , Botrytis/patogenicidade , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Fragaria/microbiologia , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Seleção GenéticaRESUMO
The prognostic value of the preoperative albumin-to-globulin ratio (AGR) has not been investigated in non-small-cell lung cancer (NSCLC). Therefore, we aimed to assess the clinical applicability of the preoperative AGR to predict the prognosis in patients with NSCLC. We retrospectively enrolled 545 patients with stage I/II/III NSCLC who underwent surgery at our institution. The cutoff value for preoperative AGR was calculated by using a receiver operating characteristic curve analysis. A low AGR was associated with several clinicopathological variables related to tumor progression. In the multivariate analyses, the preoperative AGR was identified as an independent prognostic factor for disease-free survival (DFS; P = 0.003) and overall survival (OS; P = 0.005). For patients with stage II and III with a preoperative AGR ≤ 1.43, the surgery plus chemotherapy group had a significantly longer DFS and OS than the surgery alone group (P = 0.002 and P = 0.001, respectively); however, a significant difference in DFS and OS between these two groups was not observed in patients with stage II and III with an AGR > 1.43 (P = 0.808 and P = 0.842, respectively). The preoperative AGR is an independent, significant predictor of DFS and OS in patients with NSCLC. Our results also demonstrate that the preoperative AGR might be a predictive marker of the therapeutic effect of postoperative chemotherapy in patients with stage II and III NSCLC.
Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Albumina Sérica/genética , Soroglobulinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROCRESUMO
BACKGROUND: Crassulacean acid metabolism (CAM) plants use water 20-80% more efficiently by shifting stomata opening and primary CO2 uptake and fixation to the nighttime. Protein kinases (PKs) play pivotal roles in this biological process. However, few PKs have been functionally analyzed precisely due to their abundance and potential functional redundancy (caused by numerous gene duplications). RESULTS: In this study, we systematically identified a total of 758 predicted PK genes in the genome of a CAM plant, pineapple (Ananas comosus). The pineapple kinome was classified into 20 groups and 116 families based on the kinase domain sequences. The RLK was the largest group, containing 480 members, and over half of them were predicted to locate at the plasma membrane. Both segmental and tandem duplications make important contributions to the expansion of pineapple kinome based on the synteny analysis. Ka/Ks ratios showed all of the duplication events were under purifying selection. The global expression analysis revealed that pineapple PKs exhibit different tissue-specific and diurnal expression patterns. Forty PK genes in a cluster performed higher expression levels in green leaf tip than in white leaf base, and fourteen of them had strong differential expression patterns between the photosynthetic green leaf tip and the non-photosynthetic white leaf base tissues. CONCLUSIONS: Our findings provide insights into the evolution and biological function of pineapple PKs and a foundation for further functional analysis of PKs in CAM plants. The gene duplication, expression, and coexpression analysis helped us to rapidly identify the key candidates in pineapple kinome, which may play roles in the carbon fixation process in pineapple and help engineering CAM pathway into C3 crops for improved drought tolerance.
Assuntos
Ananas/enzimologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Processamento Alternativo , Ananas/genética , Ananas/crescimento & desenvolvimento , Cromossomos de Plantas , Ritmo Circadiano/genética , Duplicação Gênica , Genoma de Planta , Íntrons , Filogenia , Proteínas de Plantas/metabolismo , Domínios ProteicosRESUMO
Recent results discovered the protective roles of methane (CH4) against oxidative stress in animals. However, the possible physiological roles of CH4 in plants are still unknown. By using physiological, histochemical and molecular approaches, the beneficial role of CH4 in germinating alfalfa seeds upon copper (Cu) stress was evaluated. Endogenous production of CH4 was significantly increased in Cu-stressed alfalfa seeds, which was mimicked by 0.39 mM CH4. The pretreatment with CH4 significantly alleviated the inhibition of seed germination and seedling growth induced by Cu stress. Cu accumulation was obviously blocked as well. Meanwhile, α/ß amylase activities and sugar contents were increased, all of which were consistent with the alleviation of seed germination inhibition triggered by CH4. The Cu-triggered oxidative stress was also mitigated, which was confirmed by the decrease of lipid peroxidation and reduction of Cu-induced loss of plasma membrane integrity in CH4-pretreated alfalfa seedlings. The results of antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (POD) total or isozymatic activities, and corresponding transcripts (APX1/2, Cu/Zn SOD and Mn-SOD), indicated that CH4 reestablished cellular redox homeostasis. Further, Cu-induced proline accumulation was partly impaired by CH4, which was supported by the alternation of proline metabolism. Together, these results indicated that CH4 performs an advantageous effect on the alleviation of seed germination inhibition caused by Cu stress, and reestablishment of redox homeostasis mainly via increasing antioxidant defence.
Assuntos
Germinação/efeitos dos fármacos , Metano/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sementes/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/metabolismo , Cobre/química , Cobre/toxicidade , Peróxido de Hidrogênio/química , Peroxidação de Lipídeos/efeitos dos fármacos , Medicago sativa/genética , Medicago sativa/crescimento & desenvolvimento , Metano/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimentoRESUMO
Heme oxygenase1 (HO1) is involved in protecting plants from environmental stimuli. In this study, a sunflower (Helianthus annuus L.) HO1 gene (HaHO1) was cloned and sequenced. It was confirmed that HaHO1 encodes a precursor protein of 32.93 kDa with an N-terminal plastid transit peptide which was validated by subcellular localization. The amino acid sequence of HaHO1 shared high homology with other plant HO1s. The predicted three-dimensional structure showed a high degree of structural conservation as compared to the known HO1 crystal structures. Phylogenetic analysis revealed that HaHO1 clearly grouped with the plant HO1-like sequences. Moreover, the purified recombinant mature HaHO1 expressed in Escherichia coli exhibits HO activity. Thus, it was concluded that HaHO1 encodes a functional HO1 in sunflower. Additionally, HaHO1 gene was ubiquitously expressed in all tested tissues, and induced differentially during different growth stages after germination, and could be differentially induced by several stresses and hemin treatment. For example, a pretreatment with a low concentration of NaCl (25 mM) could lead to the induction of HaHO1 gene expression and thereafter a salinity acclamatory response. Above cytoprotective effect could be impaired by the potent HO1 inhibitor zinc protoporphyrin IX (ZnPPIX), which was further rescued by the addition of 50% carbon monoxide aqueous solution (in particular) or bilirubin, two catalytic by-products of HO1, respectively. Similarly, a HO1 inducer, hemin, could mimic the salinity acclamatory response. Together, these findings strongly suggested that the up-regulation of HaHO1 might be required for the observed salinity acclimation in sunflower plants.
Assuntos
Helianthus/enzimologia , Heme Oxigenase-1/química , Heme Oxigenase-1/genética , Filogenia , Aclimatação , Clonagem Molecular , Cristalografia por Raios X , Regulação da Expressão Gênica de Plantas , Heme Oxigenase-1/biossíntese , Hemina/química , Hemina/genética , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Salinidade , Cloreto de Sódio/metabolismoRESUMO
In this report, the effect of hydrogen-rich water (HRW), which was used to investigate the physiological roles of hydrogen gas (H2) in plants recently, on the regulation of plant adaptation to mercury (Hg) toxicity was studied. Firstly, we observed that the exposure of alfalfa seedlings to HgCl2 triggered production of reactive oxygen species (ROS), growth stunt and increased lipid peroxidation. However, such effects could be obviously blocked by HRW. Meanwhile, significant decreases in the relative ion leakage and Hg accumulation were observed. Hg-induced increases in total and isozymatic activities of superoxide dismutase (SOD) were significantly reversed by HRW. Further results suggested that HRW-induced the activities of guaiacol peroxidase (POD) and ascorbate peroxidase (APX), two hydrogen peroxide-scavenging enzymes, was at transcriptional levels. Meanwhile, obvious increases of the ratios of reduced/oxidized glutathione (GSH), homoglutathione (hGSH), and ascorbic acid (AsA) and corresponding gene expression were consistent with the decreased oxidative damage in seedling roots. In summary, the results of this investigation indicated that HRW was able to alleviate Hg toxicity in alfalfa seedlings by (i) alleviating growth stunt and reducing Hg accumulation, and (ii) avoidance of oxidative stress and reestablishment of redox homeostasis.
Assuntos
Hidrogênio/farmacologia , Medicago sativa/efeitos dos fármacos , Mercúrio/toxicidade , Plântula/efeitos dos fármacos , Água/química , Adaptação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidadeRESUMO
The plant AT protein and zinc-binding protein (PLATZ) genes, a novel cluster of plant-specific zinc-finger-dependent DNA-binding proteins, play a crucial role in regulating stress response and plant development. However, there has been little study focus on the role of the cucumber PLATZ family in assimilating loading in leaves. (1) In this study, a total of 12 PLATZ genes were identified from the cucumber genome. The cucumber PLATZ genes were clustered into five groups, and unevenly distributed on five chromosomes. A single pair of cucumber PLATZ genes underwent segmental duplication. (2) The results of genome-wide expression analysis suggested that the cucumber PLATZ genes were widely expressed in a wide range of cucumber tissues, with three PLATZ (PLATZ2, PLATZ6, and PLATZ12) genes exhibiting high expression in the vascular tissues of cucumber leaves. PLATZ2, PLATZ6, and PLATZ12 proteins were primarily located in cytomembrane and nucleus. (3) In VIGS-PLATZ6 plants, the expression of Galactinol synthase 1 (GolS1) and STACHYOSE SYNTHASE (STS), two genes involved in the synthesis of raffinose family oligosaccharides (RFOs) were observed to be decreased in cucumber leaves. In conclusion, the comprehensive analysis of the cucumber PLATZ family and the preliminary functional verification of PLATZ6 lay the foundation for the molecular and physiological functions of cucumber PLATZ genes.
RESUMO
Rosa rugosa is highly regarded for its aesthetic and therapeutic qualities. In particular, R. rugosa's flowers are known to produce essential oils containing a mixture of volatile terpenes, phenylpropanoids, and other compounds. Despite this, extensive research exists on volatile terpenes in flowers, while the knowledge of non-volatile terpenes in distinct tissues is still limited. Using UPLC-ESI-MS/MS, a comprehensive analysis of the terpene metabolites in five different tissues of R. rugosa was conducted. These metabolites accumulated in distinct tissues, and the majority of them were triterpenoids. Transcriptome data were collected from five tissues using RNA-seq. Transcriptomics and metabolomics were utilized to evaluate the triterpene biosynthesis pathway, resulting in new insights into its regulation and biosynthesis. The RrOSC10 was identified as a key enzyme in converting 2,3-oxidosqualene into α-amyrin, potentially contributing to the triterpene biosynthesis pathway. Furthermore, the expression of the RrOSC10 gene was upregulated by salinity for 0.5 h and 1 h, with subsequent downregulation at 2 h. This study lays a foundation for future research on the biosynthesis and accumulation of triterpenes in R. rugosa.
RESUMO
Pecan seed oil is a valuable source of essential fatty acids and various bioactive compounds; however, the functions of microRNAs and their targets in oil biosynthesis during seed development are still unknown. Here, we found that the oil content increased rapidly in the three early stages in three cultivars, and that oleic acid was the predominant fatty acid component in the mature pecan embryos. We identified, analyzed, and validated the expression levels of miRNAs related to seed development and oil biosynthesis, as well as their potential target genes, using small RNA sequencing data from three stages (120, 135, and 150 days after flowering). During the seed development process, 365 known and 321 novel miRNAs were discovered. In total, 91 known and 181 novel miRNAs were found to be differentially expressed, and 633 target genes were further investigated. The expression trend analysis revealed that the 91 known miRNAs were classified into eight groups, approximately two-thirds of which were up-regulated, whereas most novel miRNAs were down-regulated. The qRT-PCR and degradome sequencing data were used to identify five miRNA- target pairs. Overall, our study provides valuable insights into the molecular regulation of oil biosynthesis in pecan seeds.
RESUMO
Hydrogen gas (H2) was recently proposed as a novel antioxidant and signalling molecule in animals. However, the physiological roles of H2 in plants are less clear. Here, we showed that exposure of alfalfa seedlings to paraquat stress increased endogenous H2 production. When supplied with exogenous H2 or the heme oxygenase-1 (HO-1)-inducer hemin, alfalfa plants displayed enhanced tolerance to oxidative stress induced by paraquat. This was evidenced by alleviation of the inhibition of root growth, reduced lipid peroxidation and the decreased hydrogen peroxide and superoxide anion radical levels. The activities and transcripts of representative antioxidant enzymes were induced after exposure to either H2 or hemin. Further results showed that H2 pretreatment could dramatically increase levels of the MsHO-1 transcript, levels of the protein it encodes and HO-1 activity. The previously mentioned H2-mediated responses were specific for HO-1, given that the potent HO-1-inhibitor counteracted the effects of H2. The effects of H2 were reversed after the addition of an aqueous solution of 50% carbon monoxide (CO). We also discovered enhanced tolerance of multiple environmental stresses after plants were pretreated with H2 . Together, these results suggested that H2 might function as an important gaseous molecule that alleviates oxidative stress via HO-1 signalling.
Assuntos
Resistência a Medicamentos , Heme Oxigenase-1/metabolismo , Hidrogênio/farmacologia , Medicago sativa/efeitos dos fármacos , Estresse Oxidativo , Paraquat/farmacologia , Adaptação Fisiológica , Monóxido de Carbono/farmacologia , Secas , Heme Oxigenase-1/antagonistas & inibidores , Hemina/farmacologia , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Medicago sativa/enzimologia , Medicago sativa/crescimento & desenvolvimento , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Protoporfirinas/farmacologia , Salinidade , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Cloreto de Sódio/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismoRESUMO
Necrotrophic pathogens replicate massively upon colonizing plants, causing large-scale wilting and death of plant tissues. Understanding both mechanisms of pathogen invasion and host response processes prior to symptom appearance and their key regulatory networks is therefore important for defense against pathogen attack. Here, we investigated the mechanisms of interaction between woodland strawberry (Fragaria vesca) leaves and gray mold pathogen (Botrytis cinerea) at 14 infection time points during the first 12 hours of the infection period using a dense, high-resolution time series dual transcriptomic analysis, characterizing the arms race between strawberry F. vesca and B. cinerea before the appearance of localized lesions. Strawberry leaves rapidly initiated strong systemic defenses at the first sign of external stimulation and showed lower levels of transcriptomic change later in the infection process. Unlike the host plants, B. cinerea showed larger-scale transcriptomic changes that persisted throughout the infection process. Weighted gene co-expression network analysis identified highly correlated genes in 32 gene expression modules between B. cinerea and strawberry. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that the disease response protein FvRLP2 from woodland strawberry interacted with the cell death inducing proteins BcXYG1 and BcPG3 from B. cinerea. Overexpression of FvRLP2 in both strawberry and Arabidopsis inhibited B. cinerea infection, confirming these genes' respective functions. These findings shed light on the arms race process by which B. cinerea invades host plants and strawberry to defend against pathogen infection.
RESUMO
The plant-specific stress response protein NRP (asparagine-rich protein) is characterized by an asparagine-rich domain at its N-terminus and a conserved development and cell death (DCD) domain at its C-terminus. Previous transcriptional studies and phenotypic analyses have demonstrated the involvement of NRP in response to severe stress conditions, such as high salt and ER Endoplasmic reticulum-stress. We have recently identified distinct roles for NRP in biotic- and abiotic-stress signaling pathways, in which NRP interacts with different signaling proteins to change their subcellular localizations and stability. Here, to further explore the function of NRP, a transcriptome analysis was carried out on nrp1nrp2 knock-out lines at different life stages or under different growing conditions. The most significant changes in the transcriptome at both stages and conditions turned out to be the induction of the synthesis of secondary metabolites (SMs). Such an observation implicates that NRP is a general stress-responsive protein involved in various challenges faced by plants during their life cycle, which might involve a broad alteration in the distribution of SMs.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Asparagina/metabolismo , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismoRESUMO
Nitrogen (N) limits plant productivity, and its uptake and assimilation may be regulated by N sources, N assimilating enzymes, and N assimilation genes. Mastering the regulatory mechanisms of N uptake and assimilation is a key way to improve plant nitrogen use efficiency (NUE). However, it is poorly known how these factors interact to influence the growth process of pecans. In this study, the growth, nutrient uptake and N assimilation characteristics of pecan were analyzed by aeroponic cultivation at varying NH4 +/NO3 - ratios (0/0, 0/100,25/75, 50/50, 75/25,100/0 as CK, T1, T2, T3, T4, and T5). The results showed that T4 and T5 treatments optimally promoted the growth, nutrient uptake and N assimilating enzyme activities of pecan, which significantly increased aboveground biomass, average relative growth rate (RGR), root area, root activity, free amino acid (FAA) and total organic carbon (TOC) concentrations, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (Fd-GOGAT and NADH-GOGAT), and glutamate dehydrogenase (GDH) activities. According to the qRT-PCR results, most of the N assimilation genes were expressed at higher levels in leaves and were mainly significantly up-regulated under T1 and T4 treatments. Correlation analysis showed that a correlation between N assimilating enzymes and N assimilating genes did not necessarily exist. The results of partial least squares path model (PLS-PM) analysis indicated that N assimilation genes could affect the growth of pecan by regulating N assimilation enzymes and nutrients. In summary, we suggested that the NH4 +/NO3 - ratio of 75:25 was more beneficial to improve the growth and NUE of pecan. Meanwhile, we believe that the determination of plant N assimilation capacity should be the result of a comprehensive analysis of N concentration, N assimilation enzymes and related genes.