RESUMO
Heart transplant and recipient survival are limited by immune cell-mediated injury of the graft vasculature. We examined the role of the phosphoinositide 3-kinase-ß (PI3Kß) isoform in endothelial cells (EC) during coronary vascular immune injury and repair in mice. In minor histocompatibility-antigen mismatched allogeneic heart grafts, a robust immune response was mounted to each wild-type, PI3Kß inhibitor-treated, or endothelial-selective PI3Kß knockout (ECßKO) graft transplanted to wild-type recipients. However, microvascular EC loss and progressive occlusive vasculopathy only developed in control, but not PI3Kß-inactivated hearts. We observed a delay in inflammatory cell infiltration of the ECßKO grafts, particularly in the coronary arteries. Surprisingly, this was accompanied by an impaired display of proinflammatory chemokine and adhesion molecules by the ECßKO ECs. In vitro, tumor necrosis factor α-stimulated endothelial ICAM1 and VCAM1 expression was blocked by PI3Kß inhibition or RNA interference. Selective PI3Kß inhibition also blocked tumor necrosis factor α-stimulated degradation of inhibitor of nuclear factor kappa Bα and nuclear translocation of nuclear factor kappa B p65 in EC. These data identify PI3Kß as a therapeutic target to reduce vascular inflammation and injury.
Assuntos
Células Endoteliais , Lesões do Sistema Vascular , Camundongos , Animais , Células Endoteliais/patologia , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Lesões do Sistema Vascular/patologia , Fator de Necrose Tumoral alfaRESUMO
Sustained, indolent immune injury of the vasculature of a heart transplant limits long-term graft and recipient survival. This injury is mitigated by a poorly characterized, maladaptive repair response. Vascular endothelial cells respond to proangiogenic cues in the embryo by differentiation to specialized phenotypes, associated with expression of apelin. In the adult, the role of developmental proangiogenic cues in repair of the established vasculature is largely unknown. We found that human and minor histocompatibility-mismatched donor mouse heart allografts with alloimmune-mediated vasculopathy upregulated expression of apelin in arteries and myocardial microvessels. In vivo, loss of donor heart expression of apelin facilitated graft immune cell infiltration, blunted vascular repair, and worsened occlusive vasculopathy in mice. In vitro, an apelin receptor agonist analog elicited endothelial nitric oxide synthase activation to promote endothelial monolayer wound repair and reduce immune cell adhesion. Thus, apelin acted as an autocrine growth cue to sustain vascular repair and mitigate the effects of immune injury. Treatment with an apelin receptor agonist after vasculopathy was established markedly reduced progression of arterial occlusion in mice. Together, these initial data identify proangiogenic apelin as a key mediator of coronary vascular repair and a pharmacotherapeutic target for immune-mediated injury of the coronary vasculature.
Assuntos
Apelina/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Células Endoteliais/fisiologia , Transplante de Coração/efeitos adversos , Animais , Receptores de Apelina/agonistas , Receptores de Apelina/fisiologia , Diferenciação Celular , Células Endoteliais/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologiaRESUMO
BACKGROUND: Glutaraldehyde fixation (G-F) decreases but likely does not eliminate the antigenicity of bioprosthetic heart valves. Rejection (with secondary dystrophic calcification) may be why G-F xenograft valves fail, especially in young patients, who are more immunocompetent than the elderly. Therefore, we sought to determine whether rejection of G-F xenograft occurs and to correlate this with graft calcification. METHODS AND RESULTS: Ascending aortas/valves (from rats [syngeneic] or guinea pigs [xenogeneic]) were transplanted (fresh or after 48 hour of G-F) into the infrarenal aortas of young rat recipients for 20 days. A xenogeneic group was also treated with steroids until graft harvest. The valves and media/adventitia were scored blindly for inflammation (0 to 4). Percent graft infiltration by T cells/macrophages was determined (immunohistochemistry), and rat IgG ELISAs were performed. There was >3 times more valve inflammation, >10 times more valve T-cell/macrophage infiltrate, and >3 times antibody rise in the G-F xenogeneic groups compared with the fresh syngeneic or the G-F syngeneic groups (P<0.05). There was >2 times more adventitial inflammation and T-cell/macrophage infiltrate in the xenogeneic groups (P<0.05). Steroid treatment decreased inflammation and antibody rise in the xenogeneic groups (P<0.05). Correlation analysis revealed media/adventitia inflammation (P=0.02) and percent macrophage (P=0.01) infiltration to be predictors of calcification. CONCLUSIONS: G-F xenografts have cellular/humoral rejection and calcify secondarily.