RESUMO
Memristors have attracted considerable attention in the past decade, holding great promise for future neuromorphic computing. However, the intrinsic poor stability and large device variability remain key limitations for practical application. Here, we report a simple method to directly visualize the origin of poor stability. By mechanically removing the top electrodes of memristors operated at different states (such as SET or RESET), the memristive layer could be exposed and directly characterized through conductive atomic force microscopy, providing two-dimensional area information within memristors. Based on this technique, we observed the existence of multiple conducting filaments during the formation process and built up a physical model between filament numbers and the cycle-to-cycle variation. Furthermore, by improving the interface quality through the van der Waals top electrode, we could reduce the filament number down to a single filament during all switching cycles, leading to much controlled switching behavior and reliable device operation.
RESUMO
Among many phase-changing materials, graphite is probably the most studied and interesting: the rhombohedral (3R) and hexagonal (2H) phases exhibit dramatically different electronic properties. However, up to now the only way to promote 3R to 2H phase transition is through exposure to elevated temperatures (above 1000 °C); thus, it is not feasible for modern technology. In this work, we demonstrate that 3R to 2H phase transition can be promoted by changing the charged state of 3D graphite, which promotes the repulsion between the layers and significantly reduces the energy barrier between the 3R and 2H phases. In particular, we show that charge transfer from lithium nitride (α-Li3N) to graphite can lower the transition temperature down to 350 °C. The proposed interlayer slipping model potentially offers the control over topological states at the interfaces between different phases, making this system even more attractive for future electronic applications.
RESUMO
When approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS2). Our first-principles calculations show that incorporation of oxygen into the TaS2 crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS2. Strikingly, this leads to a strong enhancement of the electron-phonon coupling, by up to 80% in the highly oxygenated limit. Using transport measurements on fresh and aged (oxygenated) few-layer TaS2, we found a marked increase of the superconducting critical temperature (Tc) upon aging, in agreement with our theory, while concurrent electron microscopy and electron-energy loss spectroscopy confirmed the presence of sulfur vacancies in freshly prepared TaS2 and incorporation of oxygen into the crystal lattice with time. Our work thus reveals the mechanism by which certain atomic-scale defects can be beneficial to superconductivity and opens a new route to engineer Tc in ultrathin materials.
RESUMO
Layered semiconductors such as transition metal dichalcogenides (TMDs) with proper bandgaps complement the zero-bandgap drawback of graphene, demonstrating great potential for post-silicon complementary metal-oxide-semiconductor technology. Among the TMD family, molybdenum disulfide (MoS2) is highly attractive for its atomically thin body, large bandgap and decent mechanical and chemical stability. However, current nanofabrication techniques hardly satisfy the requirements of short channel and convenient preparation simultaneously. Here, we demonstrate a simple and effective approach to fabricate short channel chemical vapor deposition (CVD) monolayer MoS2 field-effect transistors (FET) with channel length down to 20 nm. Electron-beam lithography based on high-resolution negative-tone hydrogen silsesquioxane electron resists were applied to create 20 nm wide SiO x lines, defining the short channel length. The 20 nm MoS2 FET displays ON-sate current in excess of 100 µA µm-1. The corresponding current ON/OFF ratio at room temperature reaches 105. We carefully studied the short channel effect of as-fabricated MoS2 FETs. Combining with the large-scale growth of CVD method, our results will pave a way for short channel device applications based on atomically thin two-dimensional semiconductors.
RESUMO
Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications.
RESUMO
Atomically thin black phosphorus (BP) has attracted considerable interest due to its unique properties, such as an infrared band gap that depends on the number of layers and excellent electronic transport characteristics. This material is known to be sensitive to light and oxygen and degrades in air unless protected with an encapsulation barrier, limiting its exploitation in electrical devices. We present a new scalable technique for nanopatterning few layered BP by direct electron beam exposure of encapsulated crystals, achieving a spatial resolution down to 6 nm. By encapsulating the BP with single layer graphene or hexagonal boron nitride (hBN), we show that a focused electron probe can be used to produce controllable local oxidation of BP through nanometre size defects created in the encapsulation layer by the electron impact. We have tested the approach in the scanning transmission electron microscope (STEM) and using industry standard electron beam lithography (EBL). Etched regions of the BP are stabilized by a thin passivation layer and demonstrate typical insulating behavior as measured at 300 and 4.3 K. This new scalable approach to nanopatterning of thin air sensitive crystals has the potential to facilitate their wider use for a variety of sensing and electronics applications.
RESUMO
In general, there is a fundamental trade-off between the operational bandwidth and the attainable absorption. So, obtaining broadband wave absorption of a low reference standard such as 90% is not very difficult. However, when trying to obtain higher absorption such as 99%, the bandwidth will drop dramatically. Here, we demonstrate that broadband near-perfect absorption of over 99% absorption with a 60% relative bandwidth can be obtained utilizing single-layered and nonstructured graphene loaded with periodical dielectric wires. The absorption mechanism originates from the coupling of Mie resonances in dielectric wires excited by the incident wave to the graphene plasmon resonances, which introduces two absorption contributions: direct near-field absorption in the graphene and radiative emission into the graphene.
RESUMO
Twisted monolayer-bilayer graphene (TMBG) has recently emerged as an exciting platform for exploring correlated physics and topological states with rich tunability. Strong light-matter interaction was realized in twisted bilayer graphene, boosting the development of broadband graphene photodetectors from the visible to infrared spectrum with high responsivity. Extending this approach to the case of TMBG will help design advanced quantum nano-optoelectronic devices because of the reduced symmetry of the system. Here, we observe the formation of van Hove singularities (VHSs) in TMBG by monitoring the significant enhancement of the Raman intensity of the G peak and the intensity ratio of G and 2D peaks. The strong interlayer coupling also leads to the appearance of twist-angle-dependent Raman R and R' peaks in TMBG. Furthermore, the constructed graphene photodetectors from 13.5°-TMBG show significantly enhanced photoresponsivity (â¼31 folds of monolayer graphene and â¼15 folds of trilayer graphene) when the energy of incident photons matches the interval energy between the two VHSs in the conduction and valence bands. Our findings establish TMBG as a tunable platform for investigating the light-matter interaction and designing high-performance graphene photodetectors with combined high responsivity and high selectivity.
RESUMO
Due to the large volume of exposed atoms and electrons at the surface of two-dimensional materials, interfacial charge coupling has been proven as an efficient strategy to engineer the electronic structures of two-dimensional materials assembled in van der Waals heterostructures. Recently, heterostructures formed by graphene stacked with CrOCl have demonstrated intriguing quantum states, including a distorted quantum Hall phase in the monolayer graphene and the unconventional correlated insulator in the bilayer graphene. Yet, the understanding of the interlayer charge coupling in the heterostructure remains challenging. Here, we demonstrate clear evidences of efficient hole doping in the interfacial-coupled graphene/CrOCl heterostructure by detailed Raman spectroscopy and electrical transport measurements. The observation of significant blue shifts and stiffness of graphene Raman modes quantitatively determines the concentration of hole injection of about 1.2 × 1013 cm-2 from CrOCl to graphene, which is highly consistent with the enhanced conductivity of graphene. First-principles calculations based on density functional theory reveal that due to the large work function difference and the electronegativity of Cl atoms in CrOCl, the electrons are efficiently transferred from graphene to CrOCl, leading to hole doping in graphene. Our findings provide clues for understanding the exotic physical properties of graphene/CrOCl heterostructures, paving the way for further engineering of quantum electronic states by efficient interfacial charge coupling in van der Waals heterostructures.
RESUMO
Searching for new phase-change materials for memory and neuromorphic device applications and further understanding the phase transformation mechanism are attracting wide attention. Phase transformation from the amorphous phase to the crystal phase has been unraveled in iron telluride (FeTe) bulk film deposited by pulsed laser deposition, recently. However, the van der Waals-layered feature of FeTe in the crystal form was not noted, which will benefit the scaling of the memory devices and shine light on phase-change heterostructures or interfacial phase-change materials. Moreover, the demonstration of advanced memory or neuromorphic device applications is lacking. Here, we investigate the phase transformation of FeTe starting from mechanically exfoliated van der Waals layers from a bulk single crystal. Surficial amorphization is revealed at the surface layers of FeTe flakes after exfoliation under ambient conditions, which could be transformed back to the crystalline phase with laser irradiation or heating. The conductance drop of the flake devices near 400 K verifies the phase transformation electrically. Memristor behavior of the amorphous surface in FeTe has been further demonstrated, proving the reversibility of the phase transformation and shining light on the possible applications of neuromorphic devices.
RESUMO
Interlayer coupling plays a critical role in the electronic band structures and optoelectronic properties of van der Waals (vdW) materials and heterostructures. Here, we utilize optical second-harmonic generation (SHG) measurements to probe the twist-controlled interlayer coupling in artificially stacked WSe2/WSe2 homobilayers and WSe2/WS2 and WSe2/MoS2 heterobilayers with a postannealing procedure. In the large angle twisted WSe2/WSe2 and WSe2/WS2, the angular dependence of the SHG intensity follows the interference relations up to angles above 10°. For lower angles, the SHG is significantly suppressed. Furthermore, for the twisted WSe2/MoS2 the SHG intensity largely deviates from the coherent superposition model and shows consistent quenching for all the stacking angles. The suppressed SHG in twisted transition metal dichalcogenide (TMDC) bilayers is predominantly attributed to the interlayer coupling between the two adjacent monolayers. The evolution of the interlayer Raman mode in WSe2 demonstrates that the interlayer coupling in the twisted WSe2/WSe2 and WSe2/WS2 is highly angle-dependent. Alternatively, the interlayer coupling generally exists in the twisted WSe2/MoS2, regardless of the different angles. The interlayer coupling is further confirmed by the quenching and red-shift of the photoluminescence of WSe2 in the twisted TMDC bilayers. Combined with density functional theory calculations, we reveal that the stacking-angle-modulated interlayer coupling originates from the variation of the interlayer spacing and the binding energy in the twisted TMDC bilayers.
RESUMO
Tunable and low-power microcavities are essential for large-scale photonic integrated circuits. Thermal tuning, a convenient and stable tuning method, has been widely adopted in optical neural networks and quantum information processing. Recently, graphene thermal tuning has been demonstrated to be a power-efficient technique, as it does not require thick spacers to prevent light absorption. In this paper, a silicon-based on-chip Fano resonator with graphene nanoheaters is proposed and fabricated. This novel Fano structure is achieved by introducing a scattering block, and it can be easily fabricated in large quantities. Experimental results demonstrate that the resonator has the characteristics of a high quality factor (â¼31,000) and low state-switching power (â¼1 mW). The temporal responses of the microcavity exhibit qualified modulation speed with 9.8 µs rise time and 16.6 µs fall time. The thermal imaging and Raman spectroscopy of graphene at different biases were also measured to intuitively show that the tuning is derived from the joule heating effect of graphene. This work provides an alternative for future large-scale tunable and low-power-consumption optical networks, and has potential applications in optical filters and switches.
RESUMO
Since the discovery of the quantum Hall effect in 1980, it has attracted intense interest in condensed matter physics and has led to a new type of metrological standard by utilizing the resistance quantum. Graphene, a true two-dimensional electron gas material, has demonstrated the half-integer quantum Hall effect and composite-fermion fractional quantum Hall effect due to its unique massless Dirac fermions and ultra-high carrier mobility. Here, we use a monolayer graphene encapsulated with hexagonal boron nitride and few-layer graphite to fabricate micrometer-scale graphene Hall devices. The application of a graphite gate electrode significantly screens the phonon scattering from a conventional SiO2/Si substrate, and thus enhances the carrier mobility of graphene. At a low temperature, the carrier mobility of graphene devices can reach 3 × 105 cm2/V·s, and at room temperature, the carrier mobility can still exceed 1 × 105 cm2/V·s, which is very helpful for the development of high-temperature quantum Hall effects under moderate magnetic fields. At a low temperature of 1.6 K, a series of half-integer quantum Hall plateaus are well-observed in graphene with a magnetic field of 1 T. More importantly, the ν = ±2 quantum Hall plateau clearly persists up to 150 K with only a few-tesla magnetic field. These findings show that graphite-gated high-mobility graphene devices hold great potential for high-sensitivity Hall sensors and resistance metrology standards for the new Système International d'unités.
RESUMO
Two-dimensional (2D) materials have got extensive attention for multifunctional device applications in advanced nanoelectronics and optoelectronics, such as field-effect transistors, photodiodes, and solar cells. In our work, we fabricated MoTe2-MoS2 van der Waals heterostructure photodetectors with great performance using the mechanical exfoliation method and restack technique. It is demonstrated that our MoTe2-MoS2 heterostructure photodetector device can operate without bias voltage, possessing a low dark current (10 pA) and high photocurrent on/off ratio (>104). Importantly, the room temperature photoresponsivity of the MoTe2-MoS2 photodetector can reach 110.6 and 9.2 mA W-1 under λ = 532 and 1064 nm incident laser powers, respectively. Our results indicate that the van der Waals heterostructure based on 2D semiconducting materials is expected to play an important role in nanoscale optoelectronic applications.
RESUMO
The emergence of graphene and other two-dimensional materials overcomes the limitation in the characteristic size of silicon-based micro-resonators and paved the way in the realization of nano-mechanical resonators. In this paper, we review the progress to date of the research on the fabrication methods, resonant performance, and device applications of graphene-based nano-mechanical resonators, from theoretical simulation to experimental results, and summarize both the excitation and detection schemes of graphene resonators. In recent years, the applications of graphene resonators such as mass sensors, pressure sensors, and accelerometers gradually moved from theory to experiment, which are specially introduced in this review. To date, the resonance performance of graphene-based nano-mechanical resonators is widely studied by theoretical approaches, while the corresponding experiments are still in the preliminary stage. However, with the continuous progress of the device fabrication and detection technique, and with the improvement of the theoretical model, suspended graphene membranes will widen the potential for ultralow-loss and high-sensitivity mechanical resonators in the near future.
RESUMO
Owing to the fascinating properties, the emergence of two-dimensional (2D) materials brings various important applications of electronic and optoelectronic devices from field-effect transistors (FETs) to photodetectors. As a zero-band-gap material, graphene has excellent electric conductivity and ultrahigh carrier mobility, while the ON/OFF ratio of the graphene FET is severely low. Semiconducting 2D transition metal chalcogenides (TMDCs) exhibit an appropriate band gap, realizing FETs with high ON/OFF ratio and compensating for the disadvantages of graphene transistors. However, a Schottky barrier often forms at the interface between the TMDC and metallic contact, which limits the on-state current of the devices. Here, we lift the two limits of the 2D-FET by demonstrating highly tunable field-effect tunneling transistors based on vertical graphene-WS2-graphene van der Waals heterostructures. Our devices show a low off-state current below 1 pA and a high ON/OFF ratio exceeding 106 at room temperature. Moreover, the carrier transport polarity of the device can be effectively tuned from n-type under small bias voltage to bipolar under large bias by controlling the crossover from a direct tunneling region to the Fowler-Nordheim tunneling region. Further, we find that the effective barrier height can be controlled by an external gate voltage. The temperature dependence of carrier transport demonstrates that both tunneling and thermionic emission contribute to the operation current at elevated temperature, which significantly enhances the on-state current of the tunneling transistors.
RESUMO
The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical and mechanical modes. To date, studies of NOEMS using van der Waals (vdW) heterostructures are very limited, although vdW materials are known for emerging phenomena such as spin, valley, and topological physics. Here, we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device. We demonstrated several functionalities, including nano-mechanical resonator, vacuum channel diodes, and ultrafast thermo-radiator, using monolithically sculpted graphene NOEMS as a platform. Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/graphene vdW NOEMS is further demonstrated. Our results suggest that the introduction of the vdW heterostructure into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.
RESUMO
Achieving facile control of the wavelength of light emitters is of great significance for many key applications in optoelectronics and photonics, including on-chip interconnection, super-resolution imaging, and optical communication. The Joule heating effect caused by electric current is widely applied in modulating the refractive index of silicon-based waveguides for reconfigurable nanophotonic circuits. Here, by utilizing localized Joule heating in the biased graphene device, we demonstrate electrically controlled wavelength-tunable photoluminescence (PL) from vertical van der Waals heterostructures combined by graphene and two-dimensional transition metal dichalcogenides (2D-TMDCs). By applying a moderate electric field of 6.5 kV·cm-1 to the graphene substrate, the PL wavelength of 2D-TMDCs exhibits a continuous tuning from 662 to 690 nm, corresponding to a bandgap reduction of 76 meV. The electric control is highly reversible during sweeping the bias back and forth. The temperature dependence of Raman and PL spectroscopy reveals that the current-induced local Joule heating effect plays a leading role in reducing the optical direct bandgap of TMDCs. The bias-dependent optical reflectivity and time-resolved photoluminescence measurements show a consistent reduction of the optical band gap of 2D-TMDCs and increased PL lifetimes with the electric field over the heterostructures. Moreover, we demonstrate the consistent device operation from 2D materials grown by chemical vapor deposition, showing great advantages for the scalability.
RESUMO
The integration of large-scale two-dimensional (2D) materials onto semiconductor wafers is highly desirable for advanced electronic devices, but challenges such as transfer-related crack, contamination, wrinkle and doping remain. Here, we developed a generic method by gradient surface energy modulation, leading to a reliable adhesion and release of graphene onto target wafers. The as-obtained wafer-scale graphene exhibited a damage-free, clean, and ultra-flat surface with negligible doping, resulting in uniform sheet resistance with only ~6% deviation. The as-transferred graphene on SiO2/Si exhibited high carrier mobility reaching up ~10,000 cm2 V-1 s-1, with quantum Hall effect (QHE) observed at room temperature. Fractional quantum Hall effect (FQHE) appeared at 1.7 K after encapsulation by h-BN, yielding ultra-high mobility of ~280,000 cm2 V-1 s-1. Integrated wafer-scale graphene thermal emitters exhibited significant broadband emission in near-infrared (NIR) spectrum. Overall, the proposed methodology is promising for future integration of wafer-scale 2D materials in advanced electronics and optoelectronics.
RESUMO
Two-dimensional semiconductors exhibit strong light emission under optical or electrical pumping due to quantum confinement and large exciton binding energies. The regulation of the light emission shows great application potential in next-generation optoelectronic devices. Herein, by the physical vapor deposition strategy, we synthesize monolayer hexagonal-shaped WS2, and its photoluminescence intensity mapping show three-fold symmetric patterns with alternating bright and dark regions. Regardless of the length of the edges, all domains with S-terminated edges show lower photoluminescence intensity, while all regions with W-terminated edges exhibit higher photoluminescence intensity. The photoluminescence segmentation mechanism is studied in detail by employing Raman spectroscopy, atomic force microscopy, high-resolution transmission electron microscopy, and Kelvin probe force microscopy, and it is found to originate from different strain distributions in the S-terminated region and the W-terminated region. The optical band gap determined by the photoluminescence in the dark region is â¼2 meV lower than that in the bright region, implying that more strain is stored in the S-terminated region than in the W-terminated region. The photoluminescence segmentation vanishes in transferred hexagonal-shaped WS2 from the initial substrate to a fresh silicon substrate, further confirming the physical mechanism. Our results provide guidance for tuning the optical properties of two-dimensional semiconductors by controllable strain engineering.