Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(37): e202309178, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503796

RESUMO

Phosphorescent probes often show sensitive response toward analytes at a specific wavelength. However, oxygen quenching usually occurs at the same wavelength and thus hinders the accurate detection of analytes. In this study, we have developed dual-emissive iridium(III) complexes that exhibit phosphorescence responses to copper(II) ions at a wavelength distinct from that where oxygen quenching occurs. The complexes displayed colorimetric phosphorescence response in aqueous solutions under different copper(II) and oxygen conditions. In cellular imaging, variation in oxygen concentration over a large range from 5 % to 80 % can modulate the intensity and lifetime of green phosphorescence without affecting the response of red phosphorescence toward intracellular copper(II) ions.

2.
J Phys Chem A ; 125(47): 10144-10154, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34792355

RESUMO

A series of functional platinum(II) complexes (Pt1-Pt3), which present high activity in four-photon absorption, in vivo imaging, and precise cancer therapy, as previously reported by the experimental work of Zhang et al. (Inorg. Chem. 2021, 60, 2362-2371), are computationally investigated in the article. We find that after the complex goes through four-photon absorption to the S1 state, it undergoes intersystem crossing to the T2 state and eventually reaches the T1 state through internal conversion. On the T1 state, both radiative and nonradiative decay to S0 exit. The radiative decay forms the basis for the phosphorescence imaging in tissues as reported in the original paper. In addition, the nonradiative decay can simultaneously generate cytotoxic singlet oxygen by the excited energy transfer process, also known as triplet oxygen's quenching of triplet states. We conclude that the phosphorescence property as well as the photosensitizer character jointly bring high activity of in vivo imaging and photodynamic therapy to these complexes.


Assuntos
Fotoquimioterapia , Platina , Transferência de Energia , Fármacos Fotossensibilizantes , Oxigênio Singlete
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa