Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 184(1): 194-211, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32680976

RESUMO

Drought stress severely restricts crop yield and quality. Small noncoding RNAs play critical roles in plant growth, development, and stress responses by regulating target gene expression, but their roles in drought stress tolerance in apple (Malus domestica) are poorly understood. Here, we identified various small noncoding RNAs and their targets from the wild apple species Malus sieversii via high-throughput sequencing and degradome analysis. Forty known microRNAs (miRNAs) and eight new small noncoding RNAs were differentially expressed in response to 2 or 4 h of drought stress treatment. We experimentally verified the expression patterns of five selected miRNAs and their targets. We established that one miRNA, mdm-miR171i, specifically targeted and degraded SCARECROW-LIKE PROTEINS26 1 (MsSCL26 1) transcripts. Both knockout of mdm-miR171i and overexpression of MsSCL26 1 improved drought stress tolerance in the cultivated apple line 'GL-3' by regulating the expression of antioxidant enzyme genes, especially that of MONODEHYDROASCORBATE REDUCTASE, which functions in metabolism under drought stress. Transient expression analysis demonstrated that MsSCL26.1 activates MsMDHAR transcription by positively regulating the activity of the P1 region in its promoter. Therefore, the miR171i-SCL26 1 module enhances drought stress tolerance in apple by regulating antioxidant gene expression and ascorbic acid metabolism.


Assuntos
Ácido Ascórbico/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de RNA
2.
Mediterr J Hematol Infect Dis ; 14(1): e2022033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615329

RESUMO

Background: COVID-19 is characterized by endothelial dysfunction and is presumed to have long-term cardiovascular sequelae. In this cross-sectional study, we aimed to explore the serum levels of endothelial biomarkers in patients who recovered from COVID-19 one year after hospital discharge. Methods: In this clinical follow-up study, 345 COVID-19 survivors from Huanggang, Hubei, and 119 age and gender-matched medical staff as healthy controls were enrolled. A standardized symptom questionnaire was performed, while electrocardiogram and Doppler ultrasound of lower extremities, routine blood tests, biochemical and immunological tests, serum soluble vascular cell adhesion molecule-1(VCAM-1), intercellular cell adhesion molecule-1(ICAM-1), P-selectin, and fractalkine were measured by enzyme-linked immunosorbent assays (ELISA). Results: At one year after discharge, 39% of recovers possessed post-COVID syndromes, while a few had abnormal electrocardiogram manifestations, and no deep vein thrombosis was detected in all screened survivors. There were no significant differences in circulatory inflammatory markers (leukocytes, neutrophils, lymphocytes, C-reactive protein and interleukin-6), alanine aminotransferase, estimated glomerular filtration rate, glucose, triglycerides, total cholesterol and D-dimer observed among healthy controls with previously mild or severe infected. Furthermore, serum levels of VCAM-1, ICAM-1, P-selectin, and fractalkine do not significantly differ between survivors and healthy controls. Conclusions: SARS-CoV-2 infection may not impose a higher risk of developing long-term cardiovascular events, even for those recovering from severe illness.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa